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DEFINITION OF TRANSACTION

A database state is a function from names to values. Each <name,value> pair is
called an entity. The system provides operations each of which manipulates one or
more entities. The execution of an operation on an entity is called an action.
Record and terminal are typical entity types and read and write are typical
operations.

Associated with a database is a predicate on entities called the consistency
constraint. A database state satisfying the consistency constraint is said to be
consistent.

Transactions are the mechanism which query and transform the database state. A
program P is a static description of a transaction. The consistency constraint
of the database is the minimal precondition and invariant of the program. The
program may have a desired effect which 1is expressed as an additional
postcondition C'. Using Hoare's notation:
CPycsac'.

The execution of such a program on a database state is called transaction on the
state. The exact execution sequence of a program is a function of the database
state but we model a transaction as a fixed sequence of actions:

T = <<t,Ai,Ni>|i=1,...n>
where t is the transaction name, Ai are operations and Ni are entity names.

The system may interleave the execution of the actions of several transactions.
The execution of a set of transactions by the system starting from some database
state is called a history and is denoted by the sequence:

H = <<ti,Ai,Ni>]i=1,...,m>
which is an order preserving merge of the actions of the transactions. (A later
section will show that even multiple nodes executing actions may be modeled by a
single execution sequence.)

The users of the system author programs and invoke them as transactions. They
are assured that each invocation:

. Will be executed exactly once (reliability).

. Will be isolated from temporary violations of the consistency constraint
introduced by actions of concurrently executing transactions (consistency).

The transaction may attempt to commit with the consistency constraint violated
or the program itself may detect an error. In this case the effects of the
transaction are undone and the system or program issues an error message as the
transaction output.

This paper presents a model of reliability and concurrency issues associated
with such systems.



RELJIABILITY
Model of failures

Reliability is a goal which may only be approached by the careful use of
redundancy. One never has a reliable system, if everything fails then there is
no hope of reconstructing which transactions executed or the final system state.
Hence one needs a model of failures in order to discuss reliability.

There are three kinds of entities:

. Real entities initially have null values and their values cannot be changed
once they are non-null. They may spontaneously change (in which case they
are real input messages). Or they may be written once (in which case they are
real output messages). If a transaction gives away a 100S bill, that piece
of paper exists and is beyond the control of the system.

. Stable entities have values which may be changed by the system and which
survive system restart. Pages of duplexed disk or tape (two independent
copies) are examples of stable storage. Pages of disk with an associated
duplexed log of changes from a stable (archive) base version of the pages is
another example of stable storage.

. Volatile entities have values which may be changed by the system and which
are reset to null at system restart.

Two kinds of failures are considered:

. Transaction restart: for some reason a transaction needs to be restarted;
however, its current state and the current state of the system exists
(deadlock is an example of such a failure).

o System restart: for some reason the state of all volatile entities
spontaneously change to null. However, all actions on stable and real
entities prior to a certain instant will complete and all actions after that
instant will have no effect until the system restarts.

The third kind of failure in which stable entities spontaneously change is not
considered.

Transaction restart

A transaction may experience a finite number of transaction restarts. The system
must have some way to undo such partially executed transactions. It would be
nice to postulate:

° Every action <t,A,E> has an undo-action ~<t,A,E> which cancels the effect of
the action.

Thus if T =<<t,Ai,Ei>|i=1l,...,n> executes actions <<t,Ai,Ei>]i=1,...,k> for
some k<n then the system executes the actions: <-<t Ai,Ei>|i=k,...,1> and the
transaction is undone.



Unfortunately, some entities are real and actions on them cannot be undone. The
action <John,Eat,Cake> has no undo-action =<John,Eat,Cake>. You can't have your
cake and eat it too.

Hence transactions are partitioned into two parts delimited by a commit action,
Cc:

T = <<t,Ai,Ei>|i=1,...,c-1> <<t,Ai,Ei>|i=¢,...,n>
where <t,Ac,Ec> is the first action of T which has no undo-action. The first
part of the transaction is called the prelude and the second is called the
commitment.

The commitment is not undoable (precludes transaction undo). So the actual
execution of a transaction will be of the form:
P1 -P1 P2 ~P2 ... Pj ~Pj T

where each Pi is a prefix of the prelude of T, and -Pi is the corresponding undo
of that prefix. The transaction finally runs to completion without any more
restarts. This backtracking of the transaction is transparent to the programmer
who wrote T and will only be visible to the user of T if some Pi sends messages
to the user which are subsequently undone.

In order to support transaction restart [3,4,5,6],

. Before executing any action on an entity, the system records the
corresponding undo-action in an entity called the transaction UNDO log.

. When a transaction is restarted, the actions in the transaction's UNDO log

are applied (in last-in first-out order) to reverse the effects of the
transaction.

A program may fail at any time or may attempt to commit with the consistency
constraint violated. In this case the system must undo the transaction and
commit it with an error message. Thus the system cannot allow a transaction to
enter the commitment phase until the the program issues its last action (recall
that commitment cannot be undone). Hence a special operation, the commit
operation, is introduced which signals the end of the program.

Prior to the commit action, the effects of all actions which modify real
entities are deferred and placed into an entity called a REDO log or intentions
list for the transaction. When the transaction issues an action <t,A,e> on real
entity e, a redo action denoted #<t,A,e> is inserted into the REDO log and the
action itself is deferred (thereby making the action undoable). The commit
action of the transaction requests the system to make a stable copy of the REDO
log and then perform all the deferred actions in the REDO log.

Some systems defer all actions until commit and thereby avoid the need for
transaction undo. A formal definition of this is complex since one must define
the values of volatile and stable entities which have deferred actions pending
against them. (i.e. are the changes visible before commit?) Real entities are
initially null and, as will be explained below, changes to them are deferred
until they are committed. '



System restart

If there were no volatile entities, system restart would be of no consequence.
However, current and anticipated hardware and software, provide microsecond
access times to volatile storage and millisecond access times to stable storage.
This gap is likely to persist. Hence the state of the transaction and of many
entities are represented in volatile storage.

There are four kinds of transactions at system restart:

1. Those which have all their committed actions reflected in real and stable
entities.

2. Those which were in the commitment phase at the instant of system restart.
3. Those which were in the prelude at the instant of the system restart.
4. Those which had not yet begun.

System restart transforms transactions of type 3 to transactions of type 4
because the (volatile) transaction state has been lost. System restart
transforms transactions of type 2 to transactions of type 1 because committing
transactions cannot be undone.

When the restart process completes, all transactions will be either committed or
not-yet-started and the database state will satisfy the consistency constraint.
The processing of the not-yet-started transactions is then begun. (The next
section discusses reconstruction of volatile entities at restart.)

The previous section described two things necessary for transaction restart:

d When performing an action on a volatile or stable entity, record the undo
action in the transaction's undo log.

. Defer all actions which have no undo action into a REDO log of actions until
a transaction commits.

In order to accomplish system restart three more things must be done during
normal operation of the system (in addition to the logging required for
transaction restart) [5,6,8]:

. Before performing an uncommitted action on a stable entity, record the undo
of the action in stable storage (in a stable UNDO log).

. As the first step of the commit of a transaction, record the (committed)
REDO log of a transaction as a stable object.

. As the second step of the commit of a transaction, perform all the deferred
actions in the REDO log and mark them done in the REDO log.

The first rule (called the write ahead log protocol) allows any uncommitted
action on stable storage to be undone by applying the undo actions in the UNDO
log. There is one problem: recording the undo record and performing the
operation on the stable entity are two separate actions. If the system restarts



after the undo record is recorded but before the uncommitted operation is
performed on the stable entity then the undo action will be applied to the old
value (not to the new value) of the stable entity. Further, if a system restart
occurs during transaction undo then the transaction may be only partially
undone. To solve these problems,

* all undo actions =<t,A,E> must be restartable (or idempotent):

<t,A,E>-<t,A,E> is equivalent to <t ,A,E>-<t,A,E>,...,~ <t A E>
is equivalent to ~<t,A,E>,..., <t ,AE>
{(i.e. DO-UNDO equals UNDO equals DO-UNDO-UNDO-...-UNDO). Restartability is an

additional requirement if UNDO is to be part of restart. One way to avoid this
problem is to defer all stable updates to the commitment phase and thereby
eliminate UNDO at restart.

Deferring all actions which have no undo action allows the transaction to be
undone at any time prior to that step (maximally defers commitment). The
requirement that the REDO log be made a stable object at the commit step of the
transaction allows the system to continue the execution of transaction commit at
system restart (by simply applying the REDO log of the transaction). Once a
deferred action is actually performed, the redo action may be marked as ''done"
in the REDO log. But again there is the problem that performing the operation
and marking it "donme'" in the REDO log are two separate actions. At restart omne
cannot be sure whether the last deferred action is done or not. Hence, one
concludes that:

o redo actions #<t,A,E> must be restartable:

<t,A,E> is equivalent to <t,A,E> {#<t ,AE>, ..., #<t A E>
is equivalent to #<t,A,E>,....,#<t,A,E>
(i.e. DO equals REDO equals DO-REDO-REDO-...-REDO). Thus if restart redoes

already-done actions, they will do no harm.

The most common technique for achieving restartability of redo and undo actions
is to put a version number in the entity and in the undo or redo action. The redo
(or undo) step tests the version number of the entity against the desired
version number and does nothing if the version numbers match, otherwise the undo
or redo step is actually performed. For example, message sequence numbers are
used in this way to detect and discard duplicate (redo) messages and to cancel
messages which have been sent (undo).

Checkpoint and volatile entity reconstruction

In the discussion above, only the state of stable and real entities 1is
reconstructed at system restart. The state of volatile entities is lost at
system restart.

If the state of some volatile entity is to be reconstructed at system restart
then the system must keep a REDO log of all actions on such entities and
either:

. redo all actions on the entity since the beginning of time (using the REDO
logs), or



° record a stable copy of the volatile entity at some time and then (using the
REDO logs) redo all actions since that time.

Such a stable copy is called a checkpoint and is used to minimize redo work at
restart [5,6].

The system allows the declaration of recoverable volatile entities. All entities
appearing in the system invariant should be recoverable. The system periodically
checkpoints recoverable volatile entities to stable objects. At restart all
actions subsequent to the checkpoint on these entities are redone (including
undo-actions).

Recoverable volatile entities are stable entities which have the fast access
times of volatile entities. Their cost is periodic checkpoints, 1long term
maintenance of REDO logs, and extra work at system restart.

CONCURRENCY
Motivation for serializable history

The initial database state satisfies the consistency constraint. Although each
transaction preserves the consistency constraint, the constraint may be
viclated while the transaction is in progress. For example, if a transaction
transfers funds from one account to another, the constraint that '"money is
preserved” may be violated between the debit of one account and the credit of
another account.

If there is no concurrency then each transaction begins with a consistent state
and produces a consistent state. However, one transaction may see
inconsistencies introduced by another if transactions execute concurrently.

It is difficult to write programs which work correctly in the presence of such
inconsistencies. Therefore the system prevents such inconsistencies. Clearly a
history without any concurrency (e.g. the history TieT2e...¢Tn) has no
concurrency anomalies. Such histories are called serial histories.

Concurrency is allowed, only if it does not introduce inconsistencies. The
simplest definition of this 4is to insist that any allowable history be
equivalent to a serial history. Several different equivalence relations have
been defined. Perhaps the most intuitive is developed as follows: Two operations
on entities are recognized:

. READ: reads the value of a named entity but does not change it.
i WRITE: writes the value of a named entity.

Given this interpretation, we define the dependency relation of history:
H = <...,<t1,Al,e>,...,<t2,A2,e>,...>
where tl#t2 as:
DEP(H) = { <tl,e,t2> | (Al = WRITE and A2 = WRITE) or
(Al = WRITE and A2 = READ ) or
(Al = READ and A2 = WRITE) }

]



DEP(H) tells 'who gave what to whom'. Two histories are equivalent if they have
the same dependency relation. A history equivalent to a serial history is
variously called serializable, consistent, and degree 3 consistent.

Intuitively, if H has the same 'who gave what to whom' relationship as some
serial history, then transactions cannot distinguish H from that serial history.

Locking protocol for serializable histories

Locking is one technique for controlling concurrency (the interleaving of
actions of several transactions). Used properly it can assure that all histories
are equivalent to a serial history. Four new operations are introduced:

* LOCK_S: lock the named entity in shared mode.

. LOCK_X: lock the named entity in exclusive mode.

. UNLOCK_S: unlock the named entity from shared mode.

. UNLOCK_X: unlock the named entity from exclusive mode.

We say a lock action (S or X) by a transaction on the entity named E covers all
actions up to the next unlock action (S or X respectively) action by that
transaction on entity E.

The system will ensure that no LOCK_X action is performed on an entity while
another transaction has that entity locked and conversely that no LOCK_S action
on an entity is performed while another transaction has that entity locked in
exclusive mode. More formally, the history H is legal
if H=<...<tl,Al,e>...<t2,A2,e>....> and ¢l # t2

and <tl,Al,e> is a lock action covering action <t2,A2,e> then:

if Al = LOCK_S implies A2 # LOCK X

if Al = LOCK_X implies (A2 # LOCK_S and A2 # LOCK_X).

A transacticn is said to be well-formed if

° Each READ action is covered by a LOCK_S or LOCK X action on the entity name
to be read, and

. Each WRITE action is covered by a LOCK X action on the entity to be written,
and

. Nothing is covered beyond the last action of the <tramnsaction (i.e. it
unlocks everything).

A transaction is said to be two-phase if it does not perform a lock action after
the first unlock action.

The definition of DEP(H) and of equivalence given before must be amended to
treat LOCK_S and UNLOCK S actions as READ actions and LOCK X and UNLOCK X
actions as WRITE actions. Given that amendment, the central theorem of this
development is:



THEOREM® [2,10,11,12]:
(1) If all transactions are two-phase and well-formed
then any legal history is equivalent to a serial history.
(2) If some nontrivial$ transaction T is not two-phase or well-formed
then there is a transaction T' such that
T,T' have a legal history not equivalent to any serial history.

By automatically inserting LOCK S and LOCK X actions into a transaction prior to
each READ and WRITE the system can guarantee a consistent execution of the
transactions. Further, if the s&t of transactions is not known in advance all
these precautions are required. However, if the set of transactions is known in
advance, then some of the locks may be superfluous. For example, if there is
only one transaction in the system then no locks are required. These
observations have led to many variations of the theorem. Another source of
variations is possible by giving the operations an interpretation (e.g. we
interpreted read, write and lock).

Locking and recovery

Consistency requires that a transaction be two-phase. We now argue that support
of transaction restart requires that the second locking phase be deferred te
transaction commit.

The first argument is based on the observation that UNLOCK X generally does not
have an undo action (and hence must be deferred). If transaction Tl unlocks an
entity E which T1 has modified, entity E may be subsequently read or modified by
another transaction T2. Restarting transaction Tl requires that the action of T1
on E be undone. This may invalidate the read or write of T2. One might suggest
undoing T2, but T2 may have committed and hence cannot be undone. This argues
that UNLOCK X actions are not undoable and must be deferred.

A second argument observes that both UNLOCK S and UNLOCK X actions must be
deferred to the commit action if the system automatically acquires locks for
transactions. Suppose the system released a lock held by transaction T on entity
E prior to the commit of T. Subsequent actions by T may require new locks. The
acquisition of such locks after an unlock violates the two-phase lock protocol.

Summarizing:

. Consistency combined with <transacticn restart requires that UNLOCK X
actions be deferred until the transaction executes the commit action.

. Consistency combined with automatic locking requires that all locks be held
until the transaction executes the commit action.

! Excluded are the null transaction, transactions which consist of a single read

action and associated locks, and transactions which have locks which do not
cover any action.



Degrees of consistency

Most systems do not provide consistency. They fail to set some required locks or
release them prior to the commit point. The resulting anomalies can often be
described by the the notions of degrees of consistency [4]. (A more appropriate
term would be degrees of inconsistency.) A Degree 3 consistency was defined
before as a protocol which acquires locks to cover all actions and holds all
locks to transaction commit. It was shown to prevent concurrency anomalies.

In order to support transaction restart, all systems acquire X-mode locks to
cover writes and hold them to transaction commit. This is called the degree 1
consistency lock protocol.

If the system additicnally acquires S-mode locks to cover reads but releases the
locks prior to commit then it provides degree 2 consistency.

Both of these protocols are popular. Initially this was because system
implementors did not understand the issues. Now some argue that the '"lower"
consistency degrees are more efficient than the degree 3 lock protocol. In the
experiments we have done, degree 3 consistency has a cost (throughput and
processor overhead) indistinguishable from the lower degrees of consistency.

Predicate locks

Some transactions want to access many entities. Others want only a few. It is
convenient to be able to issue one lock specifying a set of desired entities.
Such locks are called predicate locks and are represented as <T,P,M> where T is
the name of the requesting transaction, P is the predicate on entities, and M is
a mode: either S (for shared) or X (for exclusive) [2]. A typical predicate is:
VARIETY = CABERNET and VINTNER = FREEMARKABBY and YEAR = 1971

This should reserve all entities satisfying this predicate. Two predicate locks
<T1,P1,M1> and <T2,P2,M2> conflict (and hence cannot be granted concurrently) if:

. They are requested by different transactions (T1#T2) and,
. The predicates are mutually satisfiable (P1&P2) and,
] The modes are incompatible (not both S-mode).

Predicate locks are an elegant idea. (People have tried to patent them!).
Unfortunately, no one has proposed a acceptable implementation for them.
(Predicate satisfiability was one of the first problems to be proven NP
complete).

Another problem with predicate locks is that satisfigbility dis too weak a
criterion for conflict. For example the predicate:
VARIETY = CABERNET and SEX = FEMALE
is only formally satisfiable (I think). But the predicate locks:
<T1,VARIETY=CABERNET,X> and <T2,SEX=FEMALE,X>
formally conflict. A theorem prover might sort this out, but theorem provers are
suspected to be very expensive.

-10-



Granularity of locking

The granularity of locks scheme captures the intent of predicate locks and
avoids their high cost. It does this by choosing a fixed set of predicates.

Let P be a set of predicates on entities including the predicate TRUE and all
predicates of the form: "ENTITYNAME=e" for each entity <e,v>. Assume that for
each pair Q, Q' of predicates in P:
If for some entity e: Q(e) and Q'(e) are true (*)
then Q contains Q' or Q' contains Q ’
Define the binary relation > on P:
Q * Q' iff for all entities e: Q' (e) implies Q(e).

The relation > is the set containment relation and because of assumption (*)
above it orders P into a tree with root predicate TRUE.

Let the graph G(P) = <P,E> be the Hesse diagram of this partial order. That is P
is the set of vertices and E is the set of edges such that:
E ={ <A,B> | A~ B and there is not C in P: A > C » B}

A new lock mode is introduced: Intention mode (l-mode) which is compatible with
I-mode but not with S-mode or X-mode. Using this new mode, the following lock
protocol allows transactions to lock any predicate Q in P:

. Before locking Q in S-mode or X-mode, acquire I-mode locks on all parents of
Q on graph G(P).

If this protocol is followed, acquiring an S-mode or X-mode lock on a node Q
implicitly acquires an S-mode or or X-mode lock on all entities e such that Q(e)
1s true.

THEOREM [4]: Suppose locks granted on graph G(P) are:
L = { <T,Q,M> }.
Define the intent of these locks to be:
L' ={ <T,Q",M> | <T,Q,M> is in L and Q implies Q' and M # I-mod. }.
Then if no locks in L conflict, no locks in L' will conflict.

Since L' contains all the entity locks which are children of the predicate locks
this indicates that the predicate locks prevent undesired concurrency. Here we
have restricted the graph to a tree (by constraint (¥) cn P). These results
generalize to an arbitrary set of predicates which in turn generate an arbitrary
directed acyclic graph G. The generalization is useful but notationally complex.
A more detailed development would also resolve I-mode into three modes IS, IX,
and SIX for greater concurrency. see [&4] for a development of these
generalizations.

Deadlock

A locking system must have some strategy for treating lock requests which
conflict with already-granted 1locks. The simplest schemes either restart
transactions which make such requests (no wait) or restart them if the request
is ungranted for a certain time period (timecut).

~11-



Both of these approaches are subject to a phenomenon known as livelock in which
two or more transactions repeatedly cause each other to be restarted. On the
other hand, if transactions are allowed to wait indefinitely then they are
subject to deadlock in which each member of a set of transactions is waiting for
another member of the group to release a lock.

An approach which avoids such waiting allocates all desired resources to the
transaction when it starts. This avoidance scheme has notorious performance
because the resources potentially needed by a transaction are frequently much
greater than those actually used.

Data management systems generally allow deadlock to occur. Deadlock appears as a
cycle in the who-waits-for-whom graph. Deadlocks are resolved by choosing a
minimal cost node set which breaks all cycles. Transactions corresponding to
nodes of the set are undone and their locks preempted. The choice of preempted
transactions must avoid livelock.

Fortunately, the mechanism for transaction restart is already present and so
deadlock is simply another source of transaction restart. Further, deadlock is
quite rare in practice (e.g. one transaction in one thousand) and the deadlock
detection and resolution is comparatively simple (three pages of code compared
to thirty for transaction restart).

We have observed that the probability a transaction deadlocks rises linearly
with concurrency. A crude argument for this goes as follows: Let there be N+1
transactions each of which request r resources from a universe of R (r << R). The
expected fraction of resources locked by others is (Nr)/(2R) because each
transaction holds about r/2 resources. Since a transaction makes r requests, the
probability that it ever waits for a lock is: (Nr?)/(2R). Thus the probability
that a request by a transaction will wait is proportional to N. Deadlocks are of
the form "T waits for T' waits for T" or "T waits for T' waits for T'' waits for
T", ... The probability of a cycle of length two involving T and T' is
P(T waits for T')P(T' waits for T).
which is:
(r2/2R)(r2?/2R).
Since there are N possible T', the probability that T deadlocks with some T' in a
cycle of length 2 is:
N(r?/2R)2.
Generalizing, the probablility of a cycle of any length is:
N(r?/2R)? + N%3(r%/2R)? + N¥(r?/2R)* +
Assuming that the probability a transaction waits is much less than one
(typically .1 to .001 in practice):
(Nr?)/(2R) << 1
we may drop the higher order terms and conclude that the probability of deadlock
is approximately the probability of cycles of length 2:
Nr*/4R?.

The conclusions from all this arithmetic are:

® The probability a transaction experiences deadlock is propertional to the
degree of concurrency (N).

® The rate of deadlocks is proportional to N2.



® The probability a waiting transaction deadlocks is not sensitive to the
degree of concurrency.

These results have been observed in practice and in several analytic models but
no convincing proof of the result are known (7].



ISSUES IN DISTRIBUTED SYSTEMS
Model of distributed system

A distributed system partitions the set of entities into disjoint sets called
nodes. Transactions may execute at several nodes but at any instant, a
transaction resides at a particular node. Initially a transaction resides at the
node of its input message. In order for a transaction at node Nl to execute an
action on an entity at node N2 the transaction must migrate to that node by
executing the operation MIGRATE TO(N2) at node N1 and then execute the operation
MIGRATE FROM(N1) at node N2. Each node participating in a transaction keeps a
REDO and UNDO log for the transaction's actions on entities at that node.

In a distributed system, nodes may fail independently. This introduces a new
kind of failure:

o node restart: for some reason all volatile entities at the node
spontaneously change to null.

Validity of serial history

Let Tl,...,Tn be a set of transactions which execute on a svstem of m nodes. Each
node has a history of the actions it executes, Hl,...,Hm. To generalize the
results for a single node system to a multi-node system we must exhibit a single
schedule H such that:

° Each Hi is a subsequence of H and,
* Each Ti is a subsequence of H.

Among other things, the dependency set of H will be the same as the union of the
dependency sets of Hl,...,Hm. So H will be a single node history with the same
who-gave-what-to-whom relation as the union of the Hi.

H may be demonstrated constructively by associating an initially zero counter
with each node and with each transaction. Each time a node executes an action of
transaction T the node and transaction counters are set to the maximum of the
node and transaction counters plus 1. This counter is then associated with that
action of the tramnsaction. If all the actions are sorted major by their counter
value and minor by their node index then the resulting ordering is a schedule H
for all actions. This ordering has the desired properties [10,11].

Reliability

Node restart in a distributed system is much like system restart in a single
node system with the exception of transactions which have migrated among several
nodes. Transactions which migrate complicate both node restart and transaction
restart. The simplest approach to transaction restart is to adopt the rule
[12]:

. Only the node of residence can initiate transaction restart.

-14-



This rule implies that when transaction, T, migrates from node, N1, node N1
abdicates the right to restart T. This in turn means that the MIGRATE TO(N2)
operation at node Nl must prevent a restart of node Nl from restarting T. Hence,
as part of the MIGRATE TO(N2) operation, node N1 must make a stable copy of the
state of T. At a minimum, this state includes REDO and UNDO logs of transaction T
along with all locks and the state of all volatile entities belonging to T
(recall that T may migrate back to N1 and expect its program state to be
preserved). Until the transaction commits or restarts, each node restart at Nl
must reconstruct the state of T at node N1 from this information.

The commit operation broadcasts commit to each node participating in the
transaction. The transaction restart operation broadcasts restart to each such
participant. When all participants have acknowledged that they have performed
their part of the commit or restart, the_node of residence can terminate the
transaction (commit) or reinitiate it (restart).

This commit protocol has the virtue of simplicity and may become the most
commonly used algorithm. It has two properties which have caused a search for
alternate algorithms. These two problems are:

° It requires a node to be able to record the entire state of a migrated
transaction in stable storage.

. It prevents a node from unilaterally aborting a transaction which has
migrated from that node. This may tie up the resources of one node for a long
time if the transaction migrates to a node which subsequently fails.

The two-phase commit protocol is designed to. eliminate the first problem and
minimize the second. The two-phase commit protocol implements the commit action
as follows: As part of the commit action, one participant of the transaction is
appointed the commit coordinator.

The coordinator obeys the following protocol:

. Phase 1: Each participant of T is polled to see if it is prepared to commit.

d The coordinator enters phase 2 when it recoverably makes the decision to
commit or abort.

- If all participants agree to commit, the coordinator records the commit
decision in T's stable REDO log and then broadcasts the commit message
to each participant.

- If any node does not agree to commit or does not respond within a time
limit, the commit coordinator records the abort decision in T's stable
UNDO log and then broadcasts the restart message to each participant.

- The broadcast message is periodically re-broadcast to each participant
until it acknowledges that it has acted on the message.

- When the coordinator has received all the phase 2 acknowledgments it
either terminates (commit) or reinitiates (restart) transaction T.



The participants obey the following protocol:

. Phase 0: Prior to agreeing to commit, any node may unilaterally undo all
actions of the transaction at that node and broadcast transaction restart.

° Phase 1: Upon receiving a prepare to commit request,

- If the node has unilaterally restarted T it responds with transaction
restart,

- Otherwise, the participant records the REDO and UNDO log of the
transaction at the node in stable storage and responds with an agree to
commit message.

. Phase 2: The participant then waits for the coordinator's decision.

- If the coordinator broadcasts commit then the participant commits its
part of T and then acknowledges completion to the coordinator.

- If the coordinator broadcasts restart, then the participant undoes its
part of T and then acknowledges completion to the coordinator.

The two-phase commit algorithm avoids saving the volatile parts of the
transaction state. Node restart can restart any transaction not in phase two of
the commit operation. Transactions having completed phase 1 and not completed
phase 2 are called in-doubt. At node restart, the node must reestablish all
X-mode locks belonging to in-doubt transactions as well as maintain the UNDO and
REDO logs of such transactions until they resolved by the commit coordinator.
The two-phase commit protocol also minimizes the period during which a node
cannot unilaterally restart the transaction.

There are many variations of the two-phase commit protocol. There are almost no
proofs about the properties of these protocols. The central theorem is:

THEOREM: If all participants observe the two-phase commit protocol then
either all participants eventually enter the commit state
without passing through the transaction restart state.
or all participants eventually enter the restart state
without passing through the commit state.
Lindsay [9] has the most careful presentation of this resulrt.

Concurrency

Concurrency is inherent in a distributed system (each node executes
autonomously). The existence of a global history implies that the theorems about
locking generalize to distributed systems. The node can acquire locks for
actions on entities at that node. If all transactions are well-formed and two
phase then the system will provide the illusion of a centralized serial
history.

A problem with this approach is that each node has only a portion of the
who-waits-for-whom graph. In order to detect deadlock cycles, someone must glue
the pieces of the graph together. Otherwise, deadlock detection in a distributed
system is analogous to deadlock detection in a centralized system.
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TRANSACTION CONCEPT IN A PROGRAMMING LANGUAGE

The transaction concept is a fundamental notion. It already appears in data
definition and data manipulation languages associated with data management
systems. It is likely to appear in more conventional languages in the future.
This is a proposal for what such a language extension might include.

The language provides an abstraction for something like a module type which
appears to the user as a collection of operations on entities. When a module
instance is created it may be given the attributes real, stable, recoverable
volatile or volatile which indicate whether REDO and UNDO records need to be kept
for the instance and whether or not the actions must be deferred. If the
instance is to be shared then it may be given the attribute shared which will
cause the operations on the instance to acquire appropriate locks prior to
manipulating the instance®.

Each operation of the module must have corresponding undo and redo operations
based on the UNDO and REDO log.

The language also supports the verbs COMMIT and ABORT which commit the
transaction or undo it and commit it with an error message.

This is the view of the user of a module. The implementor of a module type needs
to have an interface to a lock management facility which will handle 1lock
requests and do deadlock detection. He also needs an interface to the log
management facility which will accept log records and return them on request.
Transaction undo and redo appears to the module as calls from recovery manager
which invokes the undo and redo operation passing the the undo or redo log
record [5,6].

! Note that monitors are inappropriate for the transaction notiomn. They violate

the two phase lock protocol by releasing locks at procedure exit rather than at
transaction commit.
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