How To Get Six Nines On A Tandem System (Without RDF Log Replication).

Table of Contents:
· The TMF Availability Problem (why SIAC can't use TMF).

· Matt's Security Pacific story.

· Shel's Big Tradeoff.

· Those DAM Transactions.

· Die Like A Diplodicus.

· Afterlife Extension.

· It's Alive !!! It's Alive !!!

· Live Like A "True Slime Mold" (Myxomycetes).

· Minimal Data Integrity: Two Magnetic Copies Of Every Byte.

· Replicated Database Issues.

· Research Topics.

The TMF Availability Problem (why SIAC can't use TMF).
TMF is Tandem's clustered transaction manager, at the core of their NonStop SQL product, in many critical accounts around the world.

So, why doesn't SIAC (supporting the New York Stock Exchange) use TMF for processing stock trades?

Basically, because TMF will occasionally crash. Since the D30 release of NSK/TMF3, when TMF crashes, it no longer takes the NSK cluster down with it. This has undoubtedly reduced the number of NSK crashes significantly since D30, although I haven't checked (TMF was a strong component in the spectrum of crashes for D20 and before).

TMF can cause halts, but rarely crashes because of them. We tolerate many multiple failures, but not all. TMF crashes whenever something that it requires for operation is lost: both halves of the Tmp process (the Commit Coordinator), both halves of any audit trail DP2 process (the Log Manager: LM), or if an LM's mirrored disk is down or removed (this list is not fully inclusive). When TMF has crashed, the database is only usable for the purpose of TMF crash recovery (essentially resource manager recovery on a cluster-wide scale). Therefore, the database is not available to the application. In a properly configured system, this means an outage lasting five to ten minutes.

SIAC (the New York Stock Exchange trading system) cannot tolerate such availability outages during business hours. Since TMF crashes, it cannot be the basis of their data integrity. So they have their own applications that give them fault tolerance and data integrity, with so far, nearly perfect availability for the critical components of their system. Obviously, Wall Street has more than one kind of rocket scientist.

Because of crash vulnerability, the TMF way of growing a system decreases its availability. One of the features of TMF3, is a merged log containing one or more auxiliary audit trails (Log Partitions: LP). Adding LPs is a fine way to expand the system linearly. If you add more RMs, you can add an LP for them to WAL their updates to, thereby not burdening the current set of LPs. So, like partitions on an SQL table, they provide vertical partitioning to the system.

The problem is: the more LPs you have (better linearity), the more opportunities you have for crashing TMF (worse availability).

Matt's Security Pacific story.
Matt McCline, a TMF developer now at Microsoft, went down to visit the Security Pacific Bank in Southern California, just at the end of the TMF3 project (the middle of the D30 release on NSK, 1994). He reported back to us some very interesting details of their funds transfer system which was running on Tandem, and which used TMF.

These folks, who knew more about operating TMF reliably than any of us (this is so often the case!!), supported a flow of currency for the U.S. Banks and the Treasury Department. They had a requirement of being up during business hours that was quite severe: fines for being down could range up to a million dollars an hour (back then).

They told us they were literally betting their business on TMF. I know they have since been gobbled up in a merger (maybe twice?). I'm sure that system is still purring away, working for someone.

The point was: that availability was important to them, maybe more than absolutely perfect data integrity. They wished that they had a switch to set, to tell TMF to stay up if possible. Even if it meant that part of the database might, very rarely, be wrong in content.

Shel's Big Tradeoff.
Shel Finkelstein, who worked in TMF at the same time as Matt (Shel's represents JavaSoft here at HPTS), came from a lengthy stint at IBM and had their attitude towards data integrity, which was akin to Security Pacific's wish. (Apologies to Shel if I misstate, or his opinion has changed....)

Thusly, in a perfect system, the customer gets to choose whether a broad component that affects availability (like TMF) is inclined to make decisions with the goal of absolute data integrity, or with the goal of absolute data availability. These are goals only, of course. Nothing is perfect.

The idea was, however, that the customer should make that choice, on a per-transaction or per-data item basis. And that the database and the transaction system should support those choices. And that decision needs to be in a repository, durably made.

I have a slight variation on that attitude. I feel that if we make the issues unmistakably clear and make application writing for availability or data integrity doable, and the resulting system maintainable, then we can accomplish our goal without the all of the customer interface polishing. (As the Russians used to say of their jets, which used tube technology, "If it shoots, it works.", but I'll admit that I could be wrong, in holding that attitude.)

Whatever the presentation, customers need a fine grained way to make a choice of availability versus data integrity, across the data domain and the transaction domain.

Recent events have made this possible for Tandem.

Those DAM Transactions.
DAM or DP2 transactions (RM local tx) are an interesting new feature of SQL MX (not quite working yet). They are for highly localized, and therefore high-speed transactions. Briefly, in a cluster of processors or systems, flushing the database for a cluster-wide transaction is a significant event with a response time which has a lower limit due to the speed of light and all the message hops and wait states involved (like waiting for the disk head to spin on the commit write). I have calculated between 12 and 18 separate waited message hops, if the cluster is fully fault tolerant.

A transaction that is good for one SQL request (which can be a compound SQL statement, and contained in a vector of requests), and which touches only one RM, can be flushed quickly along with a lot of simultaneous and similar transactions in a single-RM group commit, which does not involve the rest of the cluster. Not involving the cluster transaction management can radically reduce transaction response time. Hence the speed.

What's interesting here is that a certain level of autonomy is being developed in the RM, as an in-proc TM component. Some interesting architectural problems are encountered by this extension of rights and responsibilities to the RM, as well.

Die Like A Diplodicus.
They say that for a creature nearing a hundred feet in length, that intelligence (via little sub-brain neural clusters) is distributed in such a way that any thought or sensation (such as death) can occur on one end and take quite a while to be noticed at the other ends. This distributed neural processing allows for nerve signals that travel ten feet a second to support a creature ten times that size, with coordinated motion. (So it could lose its head and still make significant progress !!!)

There is a similar problem encountered and solved for RM transactions in a TMF system. The problem is that if an RM was only currently serving RM transaction requests (and no global tx), then there would be no calls to the clustered transaction management (TmfLibDP_CheckinTrans_ or TmfLibDP_CheckoutTrans_), which would be one way that work could be stopped for that RM (by the errors returned from TMF and passed to the application, which would then stop sending new requests). The other method of letting RMs know directly, comes from a broadcast to the TMF transaction service in each processor or cluster node, which would then turn around to spread the word to all of the local RMs via direct call. That is, of course, more racy and there is always a "last RM" to get the message about the TMF crash.

Since the only thing stopping a Log Manager is a rollover to a new log file requiring a communication with TMF, the RM could make significant progress logging to the LM for a set of RM transactions, before it finally sensed the crash of TMF. This progress is limited, of course, but it illustrates the real potential for autonomy of an RM, from the transaction system.

Occasional RM autonomy hmm....

Afterlife Extension.
Seems like an interesting thing. What if the RM just went rolling along after a TMF crash?

TMF couldn't ask to flush for any of the existing global transactions in progress. TMF couldn't release locks on any global transactions that had just been flushed and barely committed, right before the crash.

So those global transactions would continue to hold their locks providing isolation, as RM transactions came and went (ignore the logging for now).

And if the RM subsequently crashed at this point it would need TMF's RM recovery to come back to life, of course.

So the RM mustn't go down if it wants to continue service (sounds like an obvious thing anyway).

The primary RM could die, or switch, and the backup RM could take over, still holding the global transaction locks and retaining the RM transactional state (locks, logging, etc.).

SQL Executor wouldn't care, as long as no global transactions were begun/ended/aborted (which would generate errors), it could keep sending RM transactional requests with composite SQL statements to the RM.

So, let's address the logging issue.

After a TMF crash was noticed, and since the LM is hooked tightly to TMF (more about that later), an RM couldn't just keep shipping updates to the LM after noticing that crash (too many weird cases encountered if you do).

So, the RM could ship new RM transaction updates to a scratch pad region on the RM disk itself, which would be configured by the user for the proper size tradeoff of scratch log space versus file space.

Those kinds of scratch log writes are forced, of course. (Tandem has suffered from the attempt to support self-logging, this is just a little setaside scratch pad.) So, performance wouldn't be great (but better than zero TPS).

When you ran out of scratchpad, more could be allocated dynamically until the spare disk space was used up, and then you'd be out of luck. (You need to leave some space for the first part of RM recovery to work, lest you get the dreaded error 43's: out of disk space.)

Oh, but wait a second, what happens if TMF comes up?

It's Alive !!! It's Alive !!!
Back from death, but to a living, breathing RM that has made significant progress in the interstice.

First, upon coming up, the scratchpad log would have to be written to the LM. That would have to precede all other reintegration steps, to prepare for potential interruptions and for safety.

Presuming that the RM had survived since before the TMF crash, an abort run for the global transactions which were currently active at the time of the TMF crash could be performed against this RM: full RM recovery isn't needed, since it didn't go down. Locks would not need to be reinstantiated, since they are already held from before the crash, so no interruptions of service. (A standard RM recovery run would make the RM temporarily unavailable.)

That abort run could be done jointly for all "alive" RMs remaining up at the time of the TMF crash recovery, in one go (RMs which were down at this point would not be affected by the programmatic equivalent of the "TMFCOM ABORT TRANSACTION *, AVOID HANGING" command).

Those live-recovered RMs would then be up for TMF (might be a few other minor things that would need doing to resync).

If an RM has done no interstitial work, then a normal RM recovery might do, although if such an RM were never down, I don't see why we need to do much (like, none).

If an RM were down after doing some interstitial work, then it would have to write its scratchpad log to the LM, and proceed with a full RM recovery. (This would be a transaction service failure, followed by a double failure of the RM process pair, the only real outage combination.)

Live Like A "True Slime Mold" (Myxomycetes).
Boy, there must be no form of life lower, and less reputed, than a False Slime Mold. (My Botany professor said there is no such thing.)

A "True Slime Mold" is an interesting creature. It oscillates in its life cycle between a multi-cellular organism in a fruiting body (tiny mushroom) much like a mold or fungus, but at some point in its life all of its cells go their separate ways. The body will disintegrate into a bunch of swarm cells that either look like a swimming paramecium (complete with flagella), or if there isn't enough water, they will tuck their flagella in and creep along like an amoeba through the soil. They are fully autonomous in this stage. Then, when the conditions are right, some chemical signal is released and they all coalesce back into a True Slime Mold again. Effectively, these colonies have lived since the dawn of life on Earth. (Interestingly enough, we share a common ancestor with the same behavior, so a metastasic cancer is believed to be running this old routine from the dark regions of our genes.)

The TMF transaction system could live forever as well, dispersing and coalescing repeatedly, until NSK is cold loaded (sort of like a planet killer meteor strike).

Bridging the gap between the times when TMF is running, would require that critical applications be written using RM transactions. When multiple RMs were involved, or for the execution of large updates, they would need to be broken up into multiple RM transactions at the application end. This would incur an occasional hit in data integrity upon failure, due to the lack of atomicity for multiple transaction updates.

But the database would always be available this way. For those who cannot live without access to their data.

Of course this will put pressure on the RM group and the cluster software: RM pairs and the cluster services must never come down. Only they can create a real database availability outage in this scenario.

Minimal Data Integrity: Two Magnetic Copies Of Every Byte.
In my view, the minimal configuration that I would trust for my data would have two magnetic copies of every consistent byte (and some copies of bytes I didn't care about).

That minimally reliable magnetic configuration would include:

· Unmirrored RM disks.

· Mirrored Log disks for the LM.

· One online fuzzy dump tape copy for every database file I care about.

· One log file dump tape copy for every log file, back to the earliest online fuzzy dump of every database file I care about.

I like to think of this as two entire magnetic copies of the database:

1. RM Recovery Copy: the unmirrored RM disk + one side of the Log mirror.

2. File Recovery Copy: the online dump tapes for all the files on one RM disk + the corresponding log file dump tapes + the other side of the Log mirror.

This shows why mirroring RM disks is not as good as online fuzzy dumping. Software bugs can't get to the already dumped tapes, so you get file-recovery-to-timestamp protection for free. And it's faster, not having mirrored RM disks, because you still have to write to two mirrored Log files, whether you dump or not. (Writing Log files to the Log disk is faster than regular database writes to RM disks, because you are treating the disk like a tape and doing serial writes - see Gray and Reuter's Bible.)

Of course, the minimal configuration doesn't include multiple copies of RM fuzzy dump tapes and Log file dump tapes. Those contingencies are for those who want to assure the availability of file recovery, without concern. If you often do file recovery to timestamp due to software bugs, or simply have a need to reset to sync up with another less reliable database, this is a must. (Call it the conservative magnetic configuration.)

The availability picture (as described so far) has an interesting problem, here. During the interstitial time when TMF is down, there would only be one unmirrored magnetic copy of the RM part, which stays up (the audit scratchpad). Any loss or corruption of that copy would cause a reversion to the last TMF File or RM recoverable state. Mirroring those RM disks that you wanted to use when TMF is down could prevent data loss. After-the-flush corruption could possibly happen to both mirrors, though. (Corruption of the cache blocks before the flush is not recoverable, I believe.)

So, according to rules I set myself previously, the minimally reliable magnetic configuration for an extremely available database would include:

· Mirrored extremely available RM disks.

· Unmirrored highly available RM disks for use only when TMF is up.

· Mirrored Log disks for the LM.

· One online fuzzy dump tape copy for every database file I care about.

· One log file dump tape copy for every log file, back to the earliest online fuzzy dump of every database file I care about.

With the following two entire magnetic copies of the database:

1. RM Recovery Copy: the unmirrored RM disk + one side of the Log mirror + one RM scratchpad log mirror.

2. File Recovery Copy: the online dump tapes for all the files on one RM disk + the corresponding log file dump tapes + the other side of the Log mirror + the other RM scratchpad log mirror.

Replicated Database Issues.
This does create some problems for log shipping replication to another cluster for takeover purposes.

When TMF crashes on one cluster, wouldn't you takeover in the backup cluster? Probably, and you wouldn't be using this kind of availability, anyway.

Tandem's RDF gets its updates to the backup system from the log on the primary system. Since updates to the database when TMF is crashed would be logged to the audit scratchpad, RDF wouldn't see them until the next start TMF.

You could mix these two high availability models, but it doesn't make a whole lot of sense, I think.

There is something to be gained by doing a non-replicated database solution for availability, I believe. You avoid the cost of the backup system, but of course you don't get that total data integrity + total availability that you get with RDF. You do avoid the cost of the backup system, though.

Research Topics.
A refinement could be made, by separating the logging cluster service completely from TMF. So, that part of the TMF that manages disks and LM Logs on them (and rollovers, etc.), would need to be separate from the rest of TMF. It would need to be a separate process pair, and it would stay up through TMF crashes. (Loss of the logging cluster service pair would cause a TMF crash.)

With a reliable logging service in place, there would possibly be no need for the RM scratch log space, unless of course, the log service went down on its own (disks physically removed or other multiple failure cases).

Loss of the LM service might be dealt with by separating physical from logical log updates from the RM. Physical logging would stay with the RM, perhaps on a separate RM physical log disk or a dedicated section of the RM disk. The logical redo and undo could then go to the LM disks. In this scenario, whenever the RM fires up, it does its own RM physical recovery and comes up with physically consistent B-Trees, which may be logically inconsistent but usable. This level of autonomy for the RM, from both the TM and the LM services, would allow access to any database in the system that is on a disk on a processor or on an SMP server that is up.

Certainly, if you separate out the logging service from TMF, and thusly increase its availability, then you would be pushing the interstitial log updates from RM transactions through the Log to RDF.

