

Tandem TR 81.1

An Approach to

End-User Application Design

Jim Gray

Tandem Computers Incorporated

19333 Vallco Parkway, Cupertino CA. 95014

March 1981

ABSTRACT: Soon every desk will have a computer on it. Software to do mundane things
such as payroll, mail, and text processing exists and as a by-product produces vast quantities
of on-line in formation. Many users want to manipulate this data, often in unanticipated ways.
These unexpected uses cannot justify substantial programming costs. This paper argues that
the relational data model and operators combined with a screen-oriented forms design and
display system answers many of the needs of such users. In such a system, all data are
represented in terms of records and fields. The user defines the screens (forms) he wants to
see, and then specifies the mapping between fields of these screens and fields of the data base
records in terms of predicates and relational operators.

Copyright © 1981 D. Reidel Publishing Company. Originally appeared as a chapter of Data
Base Management and Applications, Andrew Whinston Ed., D. Reidel Publishing, 1981.
Republished by Tandem Computers Incorporated with the kind permission of D. Reidel
Publishing Company.

 2

TABLE OF CONTENTS

INTRODUCTION: The Economics of Application Programming...................................1
A STANDARD DATA MODEL: The Case for Relations...3
DATA MANIPULATION: Database Editors...6
FORMS: Displaying Records in Comprehensible Ways..8
AN END-USER APPROACH TO APPLICATION DESIGN..13
SUMMARY ...17
ACKNOWLEDGMENTS..17
REFERENCES...18

 1

INTRODUCTION: The Economics of Application Programming

Application programmers cost about fifty dollars per hour these days. On average, they
produce about one line of code per hour (this includes time to design, code, test, document,
sell and maintain). When computers were expensive, this was not a big problem. But as the
price of computers goes down, the application programming problem becomes a barrier to the
use of computers.

Every eight years the price of processing and memory drops by about a factor of ten. The
price of transducers (printers, displays, disk arms, and tape drives) is not declining and so
there continue to be some economies of scale in printing and archival storage. However the
declining cost of computer hardware has made computing equipment attractive to almost all
business operations.

Standard packages for payroll, accounting and billing, inventory control, text processing and
many other areas have been available for many years. These packages have evolved to
extremely versatile systems which can be installed with almost no application programming
effort. Typically, a customer fills out a questionnaire describing his accounting practices and
tax computations. These answers are used to “customize” an accounting package tailored to
that particular customer’s needs.

Inexpensive computer hardware along with inexpensive standard application packages result
in all the operational data of the business being captured in machine readable form. These
packages do the “standard” things (print the payroll, generate inventory reports,...). But these
packages do not do non-standard things: if a user wants the accounting program to give him
an analysis of shipping costs by order size and this analysis is not a feature of the accounting
package then the user must hire an application programmer to do the analysis. More likely the
user has a clerk do the report by hand.

There is yet-another source of interesting on-line data. The wire services, airlines, stock
markets, phone companies, and information services (e.g. Viewdata) each “publish”
information in machine readable form. Unfortunately, each of these services has its own
protocols and data representation. These days one needs a different type of terminal for each
service. As a consequence, there are lots of good and interesting data out there which you
cannot get to from an “ordinary” computer terminal.

If these trends continue, one can assume that:

1. Computer hardware is free and everybody has it.

2. Application programming is prohibitively expensive.

3. Standard application packages capture all the operational data of a business but only
present it in standard ways.

4. Interesting data are available from outside the organization in vast quantities, but the
information has diverse structures and formats.

The problem is that end-users will want to examine this data without involving application
programmers. The proposed solution is to offer an easy-to-use data analysis package which
will allow users to examine and manipulate the operational data captured and stored by

 2

standard packages and information supplied by information vendors. This proposal requires
two components:

1. An easy-to-use data analysis package.

2. A common data format which will be presented to the data analysis package by the
standard packages and information suppliers.

 3

A STANDARD DATA MODEL: The Case for Relations

The previous section argues that representing the operational data of a computer system in a
standard form is essential to end-user analysis and display of the information. This section
argues for the relational data model as that standard.

The simplest data model is the null data model. Data is represented as an unstructured
sequence of characters. The problem with the null data model is that it is very difficult to
write general pro grams to manipulate completely unstructured information. The program
needs to be told what to look for in the data.

Therefore, virtually all data models support the notion of RECORD. A record is supposed to
represent a fact about the world. A data base is composed of various records (facts). A data
manipulation language provides operators to add, delete, alter and query the records in various
ways. In such a system, each instance of a record has a type which tells how to interpret that
instance. For example, an employee record and a department record have different structures
and are distinguished by their record types.

Some data models treat all records as unstructured sequences of characters. This is fine for
applications in which records do not have much structure: For example a text processing
system may treat each line of a document as a single record. But, if records have structure, an
unstructured record model suffers from the same flaws as the null data model: One cannot
write general purpose pro grams which manipulate records unless there is some general
description of the “meaning” of the record.

So again, almost all data models interpret a record as a collection of FIELDS. Each record
type is declared to have a sequence of fields. An instance record of that type will assign a
value to each of those fields.

 4

A sample record type (TELEPHONE RECORDS), its fields and some record instances are
displayed below:

Example 1: A record type and three instances of it

This example demonstrates some of the problems of putting “ real” data into a rigid format.
The phone book which looks so simple is really quite complex. Ace Music Company has
three phone numbers, one with the notation “ If No Answer Call” and another with the
notation “From Los Gatos Telephones Call” . Each of these additional entries has another
phone book record for the Ace Music Company and the notations appear in the (usually null)
comment fields.

On examination, the simple phone book is best described as a tabular system with occasional
excursions into “unstructured” text. It is probably representative of the type of data one will
get from pre-existing information sources. “Real” data is not uniform and some creativity may
be required in mapping it to a uniform data model.

 5

In addition to reducing the difficulty of writing general purpose programs to process data, the
imposition of the record and field structure makes it possible for users to understand the data
structure.*

Beyond this simple model of records and fields, data models proliferate in two directions:

1. They add semantics and constraints to fields.

2. They add relationships among records.

For our purposes it suffices that one can write a program which will take any of these
“ fancier” data models and map them into a representation in which there are records and
fields and where field values are strings of characters. Tools which translate data from
network and hierarchical form to a tabular form are available [4]. Although these tools are
now hard to use (that is the user is expected to be a programmer), they could be made easy to
use. The translation backward (from simple to fan cy) is not easy.

Not only must a standard data model have a standard format for records, but it must also have
a standard format for record definitions. So the standard data model must describe how a file
description looks. The description defines the number of fields in the record and for each field
its name, at tributes and display format. This information allows the other programs to
interpret the records of a tabular file.

The major virtue of a tabular representation is that we can all understand it. We can print it or
put it on a screen and we can construct a language which manipulates such records in an
understand able way — a way understandable to clerks who think in terms of fields and
records in tables on the screen or on a piece of paper.

A simple data model is essential to a simple language to manipulate data. A simple data
model is also essential to a user model of the data. The described tabular model has the
minimal complexity to allow the representation of facts in a computer data base.

*This is a tabular or flat file model rather than relational model:

1. There are no domains – only character strings.
2. There is no notion of key –records are ordered in the table and have an existence independent of their

values.
This is a simplified version of the SQL data model [8].

 6

DATA MANIPULATION: Database Editors

Given this model of files consisting of records consisting of fields, it is a straight-forward task
to display the data base to a user. Such a program has many of the attributes of a text editor
and so is called a data base editor.

One imagines that all records of a particular type are arranged in a table with one row per
record (see Example 1). The terminal becomes a window with which one can examine this
table. If there are many records or if the records are very wide then most of the records will
not be visible at one time. Operators are provided to move the window around on this table
(up, down, left and right).

Users may enter new data and alter stored data by typing on the screen. Like text editors, data
base editors support insert, delete and update operations.

Beyond this point, the analogy with text editors breaks down. Data base editors support a data
manipulation language which allows the display of logical subsets of the data. This data
manipulation language is generally a syntactic sugaring of the relational calculus with some
additions (e.g. statistical analysis, pattern match, phonetic search, ...). A typical list of such
relational operations is:

PROJECT: eliminate some columns from the answer table.

SELECT: eliminate rows which do not satisfy a predicate.

JOIN: take the relational composition of two tables.

UNION: concatenate two (similar) tables to make a new one.

INTERSECTION: consider only record values which are in both tables.

SORT: reorder the answer based on some criterion.

With these operators, one can easily examine large quantities of data looking for anomalies or
trends. Such data base editors are generally available [3,5]. Experience with them has been
quite favorable: untrained users are able to learn them quickly. There are several cases in
which users saved enough money in the first month to pay for the whole system for several
years. In other cases, the application programming backlog was cut from months to weeks
because the application programmers were made so productive.

These editors are used in two modes:

1. Data is extracted from the operational system and operated on by analysts and
planners.

2. New applications are done entirely on the data base editor because the application
programming cost is so much lower.

In the first mode, users only read the data. They may want to use the data base editor to
modify operational data but I do not think this should be allowed. The operational data is
exposed as tables, but it may have complex internal structure. The data base editor cannot

 7

know or enforce this structure. For example, allowing update of operational data via a data
base editor would allow the user to credit one account and not debit another. While this is
very convenient, it should not be allowed. The operational data must only be manipulated
using the standard packages which are auditable and which enforce the standard operating
procedures of the company.

Given this prohibition on updating operational data, one might think that the data base editor
should not support update at all. But that is not so. Users will have their own private data
bases which they should be allowed to alter in any way they like. In particular, they will have
to do up dates in order to enter the data into the computer. So we must depend on the
authorization system to disclose sensitive operational data only to users authorized to see it
and not to allow any users to update operational data via the data base editor.

Database editors are usually packaged with a second component which does report
generation. Report generators format the data into page-size units which are structured as title,
body summary. In addition, the first and last pages of the report summarize the body of the
report.

Report generation is symptomatic of a problem with data base editors. People do not want to
see tables of numbers; they would like to see charts, graphs and maps which pictorially show
statistics and trends. For example, if a user wants to find out about invoice number
“34245789”, he does not want to see it as a single row of a table preceded by the rows for
invoices “34245781”,...,”34245788”. Rather he would like to see the invoice displayed as one
or more screens laid out to look just like the paper invoice. Reports are a small step in that
direction: they display tabular data in non-tabular formats. The next section examines the
problem of data display in greater detail.

To summarize the arguments so far:

1. If data is represented in or translated to tabular form, a simple data base editor can be
used by non-programmers to manipulate data.

2. These editors allow users to analyze data extracted from other sources (i.e. operational
data bases) and to install simple new applications of their own design.

3. The display of all data as tables is inconvenient for some applications. Some provision
must be made for the display of tabular data in a form more appropriate to the
application.

 8

FORMS: Displaying Records in Comprehensible Ways

We choose a simple tabular model because everyone can understand it and because it lends
itself to aggregate operators such as sort, select and join. It also admits a simple data display,
one line per record. But humans are willing to deal with much more complex data displays. In
particular, when displaying data on a printed page or screen, people prefer that the page have
some structure. For many tasks a page filled with a table of numbers is rather hard to grasp.

As mentioned in the last section, report generation systems have been aggregating and
structuring files and records into page-oriented listings for many years. The structuring
typically aggregates the data by some attributes and then prints summary statistics by attribute
(subtotal, total, ...).

Increasingly, report generation is being replaced by “ interactive reports” . The structure of
such systems has the flavor of report generation except that the system puts a “blank” report
sheet on the screen and the user types in the attributes of interest. The system then generates
the pages of the report corresponding to those attributes [1,2,6,7].

To give a specific example, consider the telephone book. In its “batch-oriented” report form
the familiar phone book is several thousand of pages and is rather cumbersome to search. An
ordinary data base editor would represent the phone book as a table. The user could scroll
through the table by using predicates on the various fields. For anyone who can type, this is
faster and easier than looking in a phone book but the display leaves a lot to be desired.
Nearby entries are displayed along with the requested entry which occupies only a single line
of the much larger display. A telephone operator who is always looking up numbers would
prefer a more structured display.

 9

A nice display for this application would allow the user to enter last and first name prefixes.
The system would then do a phonetic search on those names and display the matching entries
(and only those entries) in a structured way. For example, the four records for Ace Music
might be displayed as:

Example 2: A very simple display of a phone book lookup.

Programs to define such screens are evolving quite rapidly and have wide acceptance [6,9].
Their basic model is that a SCREEN or FORM consists of a set of WINDOWS. Each window
consists of sub-windows and of FIELDS. The display above has several windows: the outer
window contains the NAME and ADDRESS fields and the TELEPHONE inner window. The
inner window contains up to four repetitions of a telephone entry window. The telephone
entry window has two fields: a phone number field and a comment field. The user may scroll
the TELEPHONE window if there are more than four entries for the given name and address.
Scrolling the outer window causes the inner window to change consistent with the outer
window.

Forms are used as follows: the user fills in parts of the form. This constrains the window and
causes the system to fill in the remaining parts of the form. The constraints can be literal
strings (e.g. “ACE”) or can be predicates in the data base editor language (e.g. >1000).

 10

This process of filling out a form is interactive. In an invoice application the user fills in the
supplier name and the system fills in the address. The user fills in the item name and quantity
and the system fills in item number, the unit price, and total price. The interaction is repeated
until the in voice is complete. The system then totals the invoice and enters it into the
database. Order entry is a “standard” and “operational” package and is used here only as an
example.

Once retrieved, a form may be deleted from the data base, altered to replace its source in the
data base, or a new form may be entered in the data base. The user indicates the desired
operation by selecting the appropriate screen function.

The template for a form can be defined interactively. In fact the definition process is a forms-
oriented application.

1. Each window is described in turn by pointing to its corners and giving its horizontal
and vertical repetition factors. In addition a mapping from the window to a particular
set of records is specified in the language of the data base editor.

2. A field is like a window but has different attributes. Some of the attributes that may be
associated with a field are:

a. Literal value which will be displayed when the field is output. Headings, field
names, and default values are done in this way.

b. Display attributes such as protected (screen user can’ t change it), color, brightness,
etc.

c. Constraints such as mandatory (must be entered), alpha (must be alphabetic) and
allowed value ranges (e.g. between 1 and 100). In fact any predicate of the data
base editor can be used to constrain the possible values of a field.

d. For fields which are either input or output fields, a mapping from that field to the
data base record of the containing window is specified.

The mapping of windows and fields to data base records is the most difficult part of making
such systems workable. Each window is considered to be a record from some file. The screen
designer specifies the file when specifying the window. Windows nested within windows may
depend on the values of “outer” windows in defining their values. Fields within a window
consume or produce values for the fields of the records of the window.

In the example of the phone book, suppose the two name and address screen fields of the
window are called field.2 and fielt4, then the outer window is related to the “phone.book”
record type and is defined by:

 11

SELECT UNIQUE name, address

FROM phone.book

WHERE name SOUNDS LIKE field.2

AND address SOUNDS LIKE field.4;

Example 3. SQL to lookup name and address given a screen.

The SOUNDS LIKE verb allows phonetic match. If this selection matches multiple record
instances, each distinct instance of the outer window will produce a window instance. The
terminal user can scroll through each of these screen instances.

The TELEPHONE window can now be described in terms of the values of fields in the outer
window by:

SELECT number, comment

FROM phone.book

WHERE name= field2

AND address = field4;

Example 4. Look-up of phone numbers for given name and address.

At present, systems for defining screens and specifying the mapping between screens and the
data base are just evolving and so are somewhat limited and un-polished. I expect that these
systems will evolve to be quite useable. The experience with Query By Example is promising:
users can master simple aspects of a simple language, especially when the alternative is doing
the job manually.

I am glossing over several aspects of screen management systems. But one aspect is essential
to the discussion that follows. Screen management systems let one screen refer to another.
The simplest example is a menu screen. When the user selects a particular menu item, the
screen manager displays the corresponding screen. This approach has two virtues. First it
prompts the user and leads him through the application. Second it groups a set of operations
together into a transaction. Certain operations require that several screens be entered before
the operation is complete — for example hiring an employee may require filling in several
forms.

A forms-oriented application appears to be a collection of screens. The top screen is a menu
of functions. When the user enters a particular function he will be presented with forms to fill
out and with further menu selections. The user may do data entry by filling out forms or may
do data retrieval by partially qualifying a form and then asking the system to search for the

 12

records satisfying those constraints. The constraints can be literal values or QBE-like
predicates.

To summarize:

1. The relational data model and relational operators allow a simple data manipulation
language.

2. A data base editor allows for the analysis of data by naive users in unanticipated ways.

3. The meaningful display of data for screen-oriented users requires some progress in
screen definition and screen management packages but forms-oriented definition
facilities seem quite promising.

Here is a prescription for an end-user to design an application:

 13

AN END-USER APPROACH TO APPLICATION DESIGN

Find someone who has already done the application. If possible use his system. Remember
how ex pensive it is to write programs.

If you cannot find a pre-existing version of your application and if it is simple enough to fit
the forms-oriented mold then proceed as follows:

1. Describe the application in terms of the screens you would like to see. Do a scenario
of screens for each task (data entry, data retrieval, report generation,...).

2. For each screen decide what records must be maintained in the data base in order to
support the screen.

3. Use the data base editor to create this data or to extract it from pre-existing data bases.

4. Use the forms design package to describe each screen and the relationships among
screens.

I believe that clerical personnel will be able to understand this design process with very little
training. Screens are a tangible concept which they can easily grasp. Data base editors have
been quite successful precisely because they have the simple conceptual model of editing a
table.

For clerical applications, steps 1 and 2 should be relatively straight-forward, especially as
forms- oriented applications proliferate and most people gain first-hand experience with them.
The typical approach to step 2 is to have a record per screen. This horrifies data base
designers because a typical screen displays many facts (e.g. repeating groups) and so is not in
normal form. But the relational model discourages repeating groups, and users discover (or
are taught) that it is a good idea to keep one fact in one record (not two facts in one record or
one fact in two records).

At present, the requisite pieces are not all there: application packages usually do not
externalize their data as tables, data base editors are not available on some computing
systems, and form definition and management systems are rather difficult to use. But I believe
that the approach I have sketched is a viable way to allow users to tailor their own systems.

If standard application packages are written on a general-purpose data management system
then it is not difficult to extract operational data from the data management system and
display it in tabular form. (IBM’s Query By Example supports such an extraction mechanism
from IMS operational data management system. Similarly Tandem’s Enform has full access
to the Enscribe data base, subject only to authorization constraints).

Data base editors are increasingly available and certainly have a bright future.

The forms design systems and screen management systems I have seen are, not quite ready
for the bank loan officer or stock analyst. They have all the needed function but demand too
much knowledge of the screen designer. The best systems I have seen still need to be
chauffeur driven by an application programmer. It is clear that these systems will evolve and
be integrated with data base editors in the future.

 14

To give an impression of how the screen design scenario works, consider the design of the
phone book application. Clearly this application would already have been done by someone
else, but it is chosen as a simple illustration of the design approach.

The starting screen is the menu of possible applications. It already exists. We add to it a new
item for telephone books:

Example 5: The top level screen of an application.

This screen, like all others, has a title DEMO SYSTEM and a set of functions. All screens
have the HELP and PANIC functions located at the bottom of the screen. Help displays a
description of the screen in natural language (French). Panic returns the screen to the top level
menu (this menu) and cancels any transactions that were in progress. The other functions
specify preexisting applications.

 15

TELEPHONE has been added to the list of functions. A description of the telephone function
would also be added to the help file describing the screen. If that function is selected (via light
pen, mouse or function key) then the following screen is displayed:

Example 6: A telephone book look-up screen designed by a user .

The designer writes a natural language description of this screen. Each field at the bottom
represents a function. HELP triggers the display of the screen description. FIND causes the
search for the name in the phone book and displays all matching entries. INSERT puts the
data entered on the screen into the file. REPLACE is used after find, the. user first finds a
name then enters the new data on the screen and then picks the replace function to cause the
data base to be modified. DELETE, like replace, is used after FIND to delete items. The
SCROLL functions move on to the next set of matching entries. Recall that we defined this
window to be up to four vertical repetitions of phone number, comment pairs matching the
name and address. If the entry has more than four phone numbers then SCROLL.NUMBERS
will move on to the next batch of four. SCROLL.ENTRY moves on to the next names if
several names match a find. We could allow a vertical repetition of the phone entries so that
the output of a FIND would display several matching items at a time on the screen.

 16

After specifying these screens and their use, the designer would then design the data base
records to support them. In this case, this is a simple matter: one entry per phone number. The
user might be tempted to have one record per screen but that would be a mistake; both
because a name address pair can have a very large number of phone numbers and because it
would violate the one fact in one place design rule.

The remaining steps would involve defining the phone book record type to the data base
editor and the mapping between the telephone screen and the telephone record. The definition
of the records is done as in Example 1 (for a QBE-like system). The mapping between screens
and data base records is done by a forms-oriented program that asks for the mapping of each
field in the screen. The user would provide answers like the SQL statements of Examples 3
and 4.

 17

SUMMARY

In summary, it is proposed that a data base editor allows clerical personnel to maintain and
manipulate their personal data bases and to examine operational data bases. A forms-oriented
screen manager allows users to define pleasing displays of data.

How does this proposal differ from the automatic programming bubble of the seventies? First,
the problem domain has been restricted to the manipulation of data base records in a clerical
environment. Second, the proposal gives the user a very simple model of the data (records and
fields) and a simple model of data manipulation (aggregate operators like sort and select). So
it differs in that it attacks a very limited application area and attacks it by simulating the
things people already do manually. Experience with text processing systems suggests that this
approach makes a system accessible to non-programmers.

Instances of such systems are emerging from the experimental stage. These new systems will
change the prevailing attitude that end-users cannot implement simple application programs.
As a side effect, these systems will dramatically improve the productivity of applications
programmers defining interactive screen-oriented data base applications.

ACKNOWLEDGMENTS

The ideas for this paper stem from discussions with Peter DeJong (IBM Yorktown) about
Query By Example (QBE) and the much more ambitious System for Business Automation
(SBA) which he is now constructing. Several of the ideas relating to screen-oriented
application design stem from Gary Hass and Frank Nargie (IBM Santa Teresa) who used this
approach in making System R available to end-users. Discussions with and critical comments
from Allen Berglund, Keith Dick, Jonathan Perry, Robert Shaw, Bob Welles, Kim
Worsencroft, and Joan Zimmerman helped clarify my ideas and improved the presentation of
this paper.

 18

REFERENCES

[1] Tandem 16 Pathway Screen Cobol Reference Manual, Part No. 82146, Sect. 7,

Tandem Computers, 19333 Vallco Parkway, Cupertino CA 95014, 1980.

[2] Display Management System/Virtual Storage, General Information Manual, IBM
Form No. GH20-18863, IBM Data Products Division, White Plains NY 1978.

[3] Tandem 16 Enform Reference Manual, Part No. 82034, Tandem Computers, 19333
Vallco Parkway, Cupertino CA 95014, 1980.

[4] Shu, N.C., B.C. Housel, R.W. Taylor, S.P. Ghosh, V.Y. Lum, EXPRESS: A Data
EXtraction, Processing, and REStructuring System, ACM TODS Vol. 2, No. 2, June
1977.

[5] Query By Example Program Description/Operations Manual, IBM Form No. SH20-
2077, IBM Data Products Division, White Plains NY 1978.

[6] QUBE, Query/Update by Example, Intel Form No. PR60M008, Intel Commercial
Systems Division, Box 9968, Austin TX 78766, 1980.

[7] Rowe, L.A., K. A. Shoens, Screen Definition Facilities for Interactive Database
Applications, Computer Science Division, UC. Berkeley, Berkeley CA 94720, Draft
September 1980.

[8] Chamberlin, D.D., et. al., Sequel 2: a Unified Approach to Data Definition,
Manipulation and Control, IBM J. R&D, Vol. 20, No. 6, Nov. 1976.

[9] Using HP View 3000, An Introduction to Forms Design for Non-programmers , Part
No. 32209-90004, Hewlett Packard Corporation, 19447 Pruneridge Ave., Cupertino
CA 95014, 1979.

