
SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 1

SQL Access and IBM DRDA
A Comparison in a Multi-Vendor Setting

Scott Newman
Database Systems Engineering
Digital Equipment Corporation
55 Northeastern Blvd., NUO1-1/B09
Nashua, New Hampshire, 03062-1260
e-mail: Newman@broke.enet.dec.com

Jim Gray
San Francisco Systems Center
Digital Equipment Corporation
455 Market St., 7'th Fl.
San Francisco, California, 94105-2403
e-mail: JimGray@sfbay.enet.dec.com
December 1991

Introduction
This paper1 compares the IBM Distributed
Relational Database Architecture (DRDA2) and the
set of standards that form the definitions of the SQL
Access Group. The comparison is done in a multi-
vendor setting, in which client and server are often
running on different hardware or software
platforms, and are supplied by different vendors. At
this point in the evolution of heterogeneous
database interoperability, it is important that a
comparison be available because of the competitive
light in which these two approaches are viewed.
This paper is divided into four sections. The
executive summary and overview sections provide
summary and background information. The main
body of the paper divides the comparison into
technical and non-technical sections.

Terminology
Many standards and architectures are referred to
throughout this paper. They have long and involved
names or multi-letter acronyms, that can be either
tiresome or confusing.
To enhance readability, the name SQL Access is
used here to represent either the SQL Access Group
or one of the ISO, ANSI, or X/Open definitions
upon which the SQL Access definitions are based.
Similarly, the term DRDA is used to represent either
the DRDA architecture itself or one of the related
IBM architectures. Please refer to Section 3 for

1A condensed form of this paper appeared as 'Which Way to

Remote SQL?' in Database Programming and Design,V.4.2,
Dec. 1991, pp. 46-54.

2IBM DRDA should not be confused with ISO Remote
Database Access, RDA. They are unrelated.

more detail on how these standards and
architectures interrelate.

Executive Summary
SQL Access and DRDA are two very different
architectures for client-server database
interoperability. They have diverse origins; one is
the result of a collaborative effort by many
companies, the other a result of an extensive effort
by a single company. Not surprisingly, each
approach is best suited to the environment in which
it was born.
The major differences between SQL Access and
DRDA are:

DRDA is owned by IBM; SQL Access is owned
by a consortium of 42 vendors and users. (Section
4.2)
SQL Access is based on international standards;
DRDA is based on IBM architectures. (Section 3)
In the SQL Access design, all database servers
support the same SQL syntax, semantics and
datatypes, and they share a common message
encoding format. This is called the common-
subset, canonical form approach. (Sections 5.1
and 5.3)
In DRDA, each client and server speaks its own
dialect of SQL and data encodings. This is called
the anything-goes, receiver-makes-it-right
approach. (Sections 5.1 and 5.3)
An existing DRDA network will be perturbed by
the introduction of a new type of client or server.
If a new type of server is added, existing client
applications that access it need to use an SQL
dialect supported by the new server. If the new
client or server uses a new data encoding format,
existing clients or servers accessing it must add
support for the new encoding format. This
approach makes heterogeneous operability
expensive difficult to manage. (Sections 5.1 and
5.3)
SQL Access emphasizes application portability
between heterogeneous systems; DRDA provides
a form of application portability that permits
applications to be moved between client platforms
provided that the type of server being accessed
remains the same. (Section 5.4)
A SQL Access client or server implementor has
the support of software tools and a growing body
of expertise. A DRDA client or server

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 2

implementation requires significantly more
development effort due to the lack of software
tools, the protocol complexity, the message
encoding model and the required support for
packages. (Sections 4.4, 5.3, 5.9, and 5.12)
DRDA supports precompiled SQL statements
stored at the server in packages. By using
packages, the execution performance at the server
can approach the performance of the local case.
(Section 5.12)
SQL Access client applications have more
flexibility when selecting servers than do DRDA
client applications because the same SQL variant
is provided by all servers. DRDA client
applications that are tied to a particular server type
may make use of all of that server's features.
(Section 5.1)
SQL Access uses OSI networking; DRDA uses
IBM's proprietary networking (SNA). (Section
5.6)

In summary, DRDA is a remote database access
protocol defined by IBM. SQL Access is based on
existing or proposed international standards. DRDA
is oriented toward intra-IBM interoperability, SQL
Access is focused on multi-vendor interoperability.
Heterogeneous portability combined with
demonstrated interoperability, suggest SQL Access
will become the prevalent heterogeneous database
interoperability solution.

Table 1
DRDA and SQL Access Contrasted

Issue SQL Access DRDA
definer consortium IBM
goals heterogeneous

portability and
interoperability

remote access to IBM
database
servers

approach common subset anything-goes
receiver-makes-it-right

protocols for m clients
and n servers

n + m n x m

Overview
The Players

Several standards bodies are referenced throughout
this paper. In order to distinguish them, the
following definitions are offered:
International Standards Organization (ISO) is an
international standards body comprised of national
standards bodies. The Open Systems
Interconnection (OSI) Model is defined by ISO
standards, as is the SQL database language.
American National Standards Institute (ANSI) is the
national standards body representing the United
States to ISO.

X/Open is an independent, international systems
consortium of vendors. Its focus is portability and
practical implementation of open systems.

SQL Access
The SQL Access Group is a consortium of 42
member companies that was formed in 1989. Its
members include almost all major vendors of
database software and tools, as well as some
companies that are end-users of such products.
Although IBM is a member of X/Open and is very
active in the relevant ANSI and ISO standards
committees, IBM has not yet joined the SQL Access
Group.
The focus of the SQL Access Group is to accelerate
existing standards efforts and prove their viability
through prototyping. The group's efforts have
resulted in a number of submissions to the ISO
Remote Database Access (RDA), and ISO and
ANSI SQL2 committees. Most of these proposals
have been incorporated into the applicable
standards.
The SQL Access specifications are published by
X/Open. To-date, the group has produced two
specifications:

An application programming interface (API)
specification [1] that defines an embedded
database language specification, based on the
ANSI and ISO SQL definition known as SQL-89
[3].
A formats and protocols (FAP) specification [2]
for client-server communication, based on the
ISO Remote Database Access SQL Specialization
[5, 6].

The SQL Access API specification defines an
embedded SQL language based on SQL-89 [3]. In
order to support the client-server model, language
elements from the SQL2 specification were adopted
[4]. Some of these language elements, such as those
used for client-server association3 management,
were defined by SQL Access, presented to the
ANSI/ISO standards committees, and were adopted
as part of SQL2.
The current SQL Access FAP specification is a
short differences document from specific versions of
the ISO RDA Generic and SQL Specialization
specifications [5,6]. In addition to the clarifications,
implementor's agreements and limits, this
specification also contains the change proposals that
were submitted to the ANSI RDA committee and
later (mostly) adopted by ISO RDA.
SQL Access specifications augment the standards

3A client-server association is called an SQL-connection in
SQL2.

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 3

on which they are based. They define areas that the
underlying standards consider to be implementor-
defined. For example they specify lower limits on
implementor choices so that portable applications
can be written, and so that systems working within
these limits can interoperate. These implementor
agreements are an established part of the standards
process.
In X/Open terminology, the API specification is a
preliminary specification, which means it is fairly
stable. The FAP specification is considered by
X/Open to be a snapshot specification: It describes
work in-progress that is worthy of dissemination.

DRDA
DRDA is an IBM-owned architecture that addresses
database interoperability. The initial focus of
DRDA was to provide a vehicle for interoperation
between IBM's four relational database managers.
More recently, IBM has provided DRDA
specifications and seminars to other companies, so
DRDA can be used for multi-vendor interoperability
as well.
The DRDA specification [7] defines a model for
client-server interaction based on several other IBM
architectures, including SNA Logical Unit type 6.2
(LU6.2). Many aspects of the model are defined in
detail, including such operational features as
interaction with SNA network management.
DRDA draws upon the following IBM architectures
and extends them as required:

SNA Logical Unit type 6.2 (LU6.2)

Distributed Data Management Architecture
(DDM)

SNA Management Services Architecture (MSA)

Formatted Data Object Content Architecture
(FD:OCA)

Character Data Representation Architecture
(CDRA)

Two more advanced levels of DRDA provide an
architectural direction for DRDA's future.

Current Status
The SQL Access Group completed its Phase I effort
in July 1991, culminating in a public multi-vendor
interoperability demonstration of 19 client and
server prototypes. At that time, the specifications
became available through X/Open. The group is
now beginning Phase II, which will include
conformance testing, the use of TCP/IP, a call-level
programming interface, and persistent
(precompiled) SQL statements stored at servers.
Future phases may address multi-server
transactions, stored procedures, large objects, and

enhanced security.
To advance the FAP specification beyond the
snapshot level, an effort is underway to align it with
the recently progressed Draft International Standard
version of the RDA specification. The FAP
implementors' agreements are also being co-
ordinated with the RDA SIG at the National
Institute of Standards and Technology (NIST) OSI
Implementors' Workshop. The SQL Access FAP
implementors' agreements were adopted by the
NIST RDA SIG as the core of its base document.
We believe products based on SQL Access will
appear late in 1991. SQL Access gateways to IBM
database servers have been demonstrated in addition
to the nine servers and ten clients at the July SQL
Access interoperability demonstration.
DRDA clients and servers are currently being
implemented by several IBM relational data
managers. Recent IBM announcements state that
DRDA will be used for interoperability in product
releases in March 1992. IBM has hosted two
workshops for companies interested in learning
about DRDA. In addition, nine companies have
announced an intention to provide DRDA
implementations in order to access data at IBM
servers. A number of these companies are also SQL
Access members, some of which also have working
SQL Access client and server prototypes.

Non-Technical Differences
There are a number of differences between SQL
Access and DRDA that are non-technical in nature.
Some differences have an impact on the practical
aspects of product development; others affect how
the specifications will evolve.

Types Of Standards
There are two types of public standards:

A de facto standard is created when one
company's product dominates an area to such an
extent that other companies follow with their own
implementations.
A de jure standard is established by a standards
organization through a formal process.
International computer vendors must provide
products that conform to the applicable de jure
standards in order to satisfy the procurement
criteria of governments and industries in many
countries.

SQL Access' goal is to advance de jure standards by
first prototyping designs, and then proposing
incremental changes to existing standards bodies.
As these proposals are incorporated in ISO
standards and implementor agreements, they
become de jure standards.

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 4

DRDA is an IBM architecture that might become a
de facto standard after some time, if other
companies decide to implement it. If this happens,
vendors will be compelled to implement both
approaches, or at least to implement a SQL Access
to DRDA gateway.

Ownership
The issue of ownership of specifications is at the
core of many non-technical issues. Ownership
ultimately dictates who controls the content of a
specification. The specifications that form the SQL
Access definitions are controlled either by national
and international standards bodies or by consortia.
A company that wishes to provide input to the
specifications or influence their direction is free to
join any or all of the standards bodies, and work to
affect the standards.
DRDA is owned by IBM. Its specifications are
copyrighted by IBM. IBM has indicated that it will
license DRDA to interested parties for a nominal
fee.

Change Process
SQL Access and DRDA are evolving technologies.
The current DRDA specification describes the first
of three architectural levels, termed remote-unit-of-
work. The recently published SQL Access
specifications are the result of the first phase in
SQL Access' evolutionary approach to database
interoperability.
The direction of the SQL Access effort is
determined through a committee process in which
member companies are free to make proposals.
Technical changes to specifications are carried to
one of the technical working groups by member
companies. Each member company is entitled to one
vote on each committee in which it participates.
When appropriate, SQL Access submits change
proposals to the ANSI X3H2 (SQL) and X3H2.1
(RDA) committees. Such proposals are submitted
by standards committee members representing their
companies, and voted on using the normal ANSI
committee rules. Many of the company
representatives on the SQL Access technical
committees also represent their companies on the
corresponding ANSI committee.
The DRDA change process is managed by an
internal IBM architecture committee with
representation from the four major IBM relational
database products (DB2, SQL/DS, OS/400 and
OS/2 EE Data Manager). IBM will probably
provide a mechanism through which interested
companies can participate in DRDA's evolution.
However, it is unlikely that the procedure for

approving architecture changes will approach the
equity of the one company, one vote forum of SQL
Access and the national standards bodies.
In addition to its in-house DRDA effort, IBM is an
active member of the RDA and SQL2 committees at
ANSI and national standards bodies in other
countries. A number of improvements and additions
to RDA and SQL2 are due to IBM – some of which
parallel corresponding facilities in DRDA.

Implementation Difficulty
The implementation of either a DRDA or SQL
Access client or server is a very significant
undertaking. Bringing an architecture or a standard
from the paper stage to a working implementation is
a long and arduous process – particularly in the
multi-vendor interoperability setting.
The following sections examine aspects of SQL
Access and DRDA that have a significant impact on
implementation difficulty and cost. The focus is on
the implementation of the client or server facility
itself, not the application program that uses them.

Software Tools
Software tools can greatly accelerate an
implementation effort. If a number of separate
implementations use the same tools, some reduction
in the interoperability testing effort may also be
realized.
SQL Access message formats are defined by an
ASN.1 module that is available through electronic
mail. A number of message format compilers are
available that automatically generate complete sets
of message encoding and decoding routines. This
alleviates much of the tedious, error-prone
programming associated with implementing
communications protocols.
No corresponding tools are available for DRDA
implementations, so developers must hand-code
these routines, and many tables of constant values.
This lack of DRDA tools increases development
costs and the probability of programming and
interoperability problems.

Available Expertise
When developing an implementation from an
architecture or standards specification, no matter
how well-written, there are invariably points of
confusion. It is important for implementors to have
access to one or more experts in order to gain
insight into what the specification really means.
The DRDA manuals are steeped in terminology
from varied IBM environments, such as: SNA for
LU6.2, AS/400 for DDM, and MVS for the
encoding architecture. Although IBM is offering

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 5

DRDA classes and testing facilities, all the
designers of DRDA are architects or key engineers
at IBM. Few engineers outside of IBM have a grasp
of the diverse and elaborate IBM architectures
required to understand and implement DRDA.
In the standards arena, each participating company
has its own representative who can either answer
detailed questions on a standard, or locate someone
who can. The formation of the SQL Access group
has brought together a large body of individuals
comprised of both standards committee participants
and developers (sometimes the same person). These
individuals worked together to increase their
expertise – then they put it to the test by prototyping
implementations.
In addition to the expertise within SQL Access and
the associated standards committees, there is an
ever-growing pool of OSI application expertise in
both the industrial and academic realms.

Technical Differences
There are many technical differences between SQL
Access and DRDA. Some differences, in areas such
as language and catalog tables, affect the application
programmer's ability to write portable applications.
In other areas, such as data value and message
encoding, client and server implementation effort
and complexity are affected.

Language
The approach to database language is an area of
significant difference between DRDA and SQL
Access. Both use SQL as their database language,
but the variants of SQL and the way in which they
are used by a client application are dramatically
different.
SQL Access uses a common subset approach in
which a single language is used. The single,
standard SQL variant gives client applications
uniform SQL syntax and semantics on any
conforming server from any source. This approach
relieves the portable applications developer of the
task of finding a common subset among the SQL
dialects supported by heterogeneous servers. It also
permits the selection of the target server to be
deferred until run-time.
In the common subset approach, client application
tools such as precompilers are able to provide direct
support for the single SQL variant used. The
development and packaging of end-user tools, such
as query tools and fourth-generation languages, is
simplified because tools can be written using a
single, standard SQL variant that is supported across
all servers.
DRDA takes an anything-goes approach in which

any variant of SQL may flow from a client to a
server. The SQL statements invoked at a particular
server must use the variant of SQL supported by the
server's data manager. This means that the SQL
syntax, semantics and SQL data types supported by
a specific server are exposed to the client
application.
In DRDA's design, a client applications developer
must be aware of the semantic and syntactic
idiosyncrasies of the server, as well as specifics of
SQL data types it supports. This means that the
application developer must have a working
knowledge of each type of data manager at each
DRDA server that might be accessed.
Early in the development cycle, the DRDA client
application developer must select the type of server
it plans to access, in order to take data manager-
specific details into account. This limits the freedom
of the application user to choose a server with a
different data manager at run-time. Portable
application developers must search-out a common
SQL subset supported across all of the servers to
which access is planned.
In order to support the anything-goes model, DRDA
client application tools must be extremely tolerant
of the SQL syntax that they allow. If a precompiler
is one of the tools for an existing data manager, it
will likely need to provide two very different modes
of operation. In its normal mode, the precompiler
would support only its native SQL variant, and
provide all of its usual application support and
syntax checking. In an anything-goes mode, the
precompiler would perform minimal, if any, SQL
syntax checking in order to permit another variant
of SQL to pass through it on its way to the server.
IBM's SAA provides assistance to DRDA
applications that wish to be less dependent on a
particular server type. SAA SQL [8] provides a
definition of SQL intended to work across all SAA
compliant data managers. While the SAA SQL
definition goes a long way toward pulling together
the SQL variants supported by the four IBM SAA
data managers, there are areas (e.g., SQL data type
support) where data manager specifics still show
through. More significantly, this SAA definition is
primarily based on existing IBM SQL variants. It is
not a multi-vendor specification, such as an
international standard, and it lacks certain key
components like a standard database catalog.
DRDA and SQL Access both permit the client
application to use SQL extensions that are
supported by the server. DRDA permits this
inherently through its anything-goes database
language approach. SQL Access provides an escape
clause mechanism through which many non-

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 6

standard extensions can be supplied without
perturbing database managers that do not support
the extensions.
Static (embedded) and dynamic SQL are supported
by both SQL Access and DRDA. SQL Access'
support for dynamic SQL is based on SQL2, but it
is an extension to RDA. The RDA SQL
Specialization does not yet address dynamic SQL,
which is absent from SQL-89. It is expected that the
SQL Access extensions to RDA for dynamic SQL
will be proposed as enhancements to RDA.
In summary, SQL Access applications use a single
SQL definition to access many different server
implementations. In this environment, a client
application that accesses, for example, three
different servers can use a single variant of SQL
throughout. DRDA applications use the SQL variant
that is supported by the target server – which must
be selected at development time. In the DRDA
environment, a client application accessing three
different servers could contain three different
variants of SQL within the same program.

Catalog Tables
Catalog Tables, or Schema Information Tables,
provide metadata that describes the data managed
by a particular server. Client applications query the
catalog to learn what tables exist and are accessible
to a particular user and to obtain datatype
information on specific columns within those tables.
The existence of standard catalog tables is
particularly important to decision-support and ad
hoc query tools that rely on the catalog information
to learn about the user's database.
SQL Access defines a set of catalog tables that have
standard attributes and values. These tables are
based on the corresponding SQL2 definitions.
Additional server information is provided that
augments standard information provided by SQL2
catalogs.
DRDA (or SAA) takes the anything-goes approach
to catalog tables. It does not define a set of standard
catalog tables. Applications obtain metadata
information by issuing queries against the catalog
tables that are provided by the server's underlying
data manager. These tables vary significantly from
data manager to data manager. For example, the
catalog tables provided by the four IBM relational
data managers are quite different.
The lack of standard catalog tables requires that the
client application be aware of the data manager
variant at a particular server. In addition, the client
application must know the structure of the catalog
information provided by each type of data manager
that is likely to be accessed.

Message/Data Value Encoding
SQL Access and DRDA have dramatically different
approaches to encoding protocol information and
data values. One fundamental difference is that the
SQL Access approach uses existing OSI standards,
while DRDA is based on IBM architectures. The
significant differences are summarized by Table 2.
SQL Access uses ISO Abstract Syntax Notation 1
(ASN.1) to define the messages that are used for
communication between client and server. These
definitions are independent of the transfer syntax
(encoding) that is actually used when the messages
are sent over the communications network.
The transfer syntax used for SQL Access messages
is specified by the ISO Basic Encoding Rules (BER)
for ASN.1 [10]. BER uses a Type/Length/Value
triplet to convey a value. The value itself is
represented in a well-defined, platform-independent,
canonical form. The client and server must both
convert to and from the canonical form, but each
need only provide a single set of data conversion
functions in order to do so.

Table 2
Encoding Characteristics

 SQL Access DRDA
Encoding Strategy canonical form receiver-makes-it-right
Abstract Syntax ISO ASN.1 DDM and FD:OCA
Transfer Syntax ISO BER for ASN.1 DDM and FD:OCA
Negotiated? Yes No

In SQL Access, the choice of transfer syntax used is
negotiated on a per-connection basis. The
negotiation mechanism is provided by the OSI
Presentation Layer, through which client and server
can indicate their preferences and select
accordingly.
DRDA uses Level 3 of IBM's Distributed Data
Management (DDM) Architecture to define the
abstract syntax and encoding for commands and
responses that flow between client and server. The
abstract syntax and encoding for data and metadata
are encoded using FD:OCA. FD:OCA is an IBM
architecture that is also used in compound document
architectures.
Message descriptors are provided in a multi-level
scheme that eventually specifies the encoding
format for the actual data values. Data values are
encoded using one of three currently defined
formats. These encoding formats are the native
formats used on IBM's most popular platforms:
System/370, AS/400 and Intel 80x86. IBM or
another party could add additional encoding formats
through a process administered by IBM. For

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 7

example, IBM may choose to add a fourth encoding
format in order to accomodate its RISC-based
systems in DRDA.
The responsibility for data conversion is split
between client and server in DRDA. At the time of
protocol initiation, each side specifies a single
encoding format it intends to use for the duration of
the interaction. No negotiation occurs, but either
side can reject the other's choice by refusing to
participate. If the sender's encoding format is
accepted, the receiver (client or server) of data must
perform the conversion between the sender's data
format and its native platform format, unless the
receiver has the same native data types. This scheme
is called receiver-makes-it-right.
DRDA's receiver-makes-it-right approach to data
encoding minimizes data conversions and
consequent loss of information. If conversion is
needed, DRDA spreads the burden equally between
client and server. Unfortunately, this scheme
requires both sides to implement at least n-1
complete sets of data conversion routines for n
encoding formats. If none of the n encoding
formats matches a particular implementation
platform's, the full n sets of conversion routines
will be required, and at least one set of
conversion routines will be required for data
that is sent.
The receiver-makes-it-right approach has a benefit
when dealing with character data. Character
conversions that use an intermediate character set
are prone to information loss. DRDA's approach
eliminates information loss by removing
unnecessary conversions. Although X/Open
constrains character set support to conforming
clients and servers, the SQL Access FAP supports
diverse character sets and the minimization of
character set conversions. Further enhancements to
character set support in ISO RDA are expected to
be included in SQL Access as it aligns itself with
the more recent version of RDA.
A natural language analogy illustrates the difference
between the canonical form and the receiver-makes-
it-right approaches. The canonical form approach
corresponds to the universal language Esperanto,
which is not the native language of any country in
the world. Anyone wishing to use Esperanto would
have to learn it, but if we all learned this one
language we could speak with anyone else in the
world.
The receiver-makes-it-right approach corresponds
to a world in which many languages exist, and in
which individuals always speak their native
language. When individuals from different countries
interact, each one speaks his native language, but he
must learn the other's language in order to

understand what others say. Each time a speaker of
a different language is added, all participants must
learn another language.
The costs and benefits of Esperanto and receiver-
makes-it-right are fairly clear. If more than two
languages are spoken, there is much less learning
required if a single, standardized language is used
by all parties concerned. These economies are the
key rationale for standards.
In summary, SQL Access and DRDA have
fundamentally different approaches to message and
data value encoding. They both minimize or
eliminate any information loss. While the
ASN.1/BER approach almost always requires both
client and server to convert a particular data value,
one set of data conversions need be implemented by
a particular client or server. The DRDA receiver-
makes-it-right approach, is efficient among similar
platforms, but in a heterogeneous network many sets
of conversion routines must be implemented by
each client and server. In addition, the realities of
development resources and the administrative and
synchronization issues associated with introducing
support for new encodings in product releases, is
likely to result in one or two encodings becoming
the de facto encodings for DRDA.

Application Portability
Application portability is a main goal of SQL
Access (interoperability is the other goal). SQL
Access adopted an application-level definition for
embedded SQL as its portability interface. It may be
used by an application on any database platform
conforming to the SQL Access API specification –
which is X/Open's SQL specification and is a subset
of the SQL2 language. This approach permits
application portability across all conforming client
platforms, independent of whether the same or a
different server is accessed.
DRDA provides a different type application
portability. Application programs may be ported to
different DRDA clients, provided that the
application does not change the type of data
manager that it is accessing at a DRDA server. For
example, a CICS COBOL application that uses DB2
embedded SQL can continue to access DB2
remotely from an OS/2 DRDA client without any
changes to its SQL-related parts. The DB2 variant
of SQL, DB2 catalogs, and DB2 data types are
identical when viewed remotely from the new client
platform. This type of portability is one of the key
motivations behind DRDA's anything-goes
approach to language.

Diagnostics
SQL Access and DRDA both provide the

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 8

application program with status information upon
completion of each SQL operation. This is
accomplished using both the SQLCODE and
SQLSTATE mechanisms for return status codes.
The SQLSTATE return codes provided by SQL
Access and DRDA are both based on the SQL2
SQLSTATE definition. SQL Access provides a
standard set of SQLCODE return codes that are also
SQL2-based. DRDA does not provide a standard set
of SQLCODE return codes. Consistent with its
anything-goes model, DRDA returns the
SQLCODE provided by the underlying data
manager at the server.

Network Requirements
SQL Access and DRDA both assume a particular
communications network environment. SQL Access,
being an early implementation of ISO RDA, is
based on the OSI Reference Model and assumes the
OSI addressing and naming structure. Only the most
basic capabilities of the Session and Presentation
Layers are employed for client-server
communication.
Without significantly perturbing its formats and
protocols, SQL Access could be adapted to run over
any communication network that provides end-to-
end, full-duplex, virtual circuit-type connections.
TCP/IP and DECnet peer-to-peer communications
are examples of popular network environments that
provide the services needed by SQL Access. SQL
Access is well into an effort to specify how database
interoperation is achieved over a TCP/IP network.
DRDA uses SNA LU6.2 for client-server
communications. The DRDA protocol description
uses LU6.2 terminology. In addition, protocol flows
are described in terms of the LU6.2 verbs, and
associated information, that are used at each step in
an exchange.

Table 3
Network Requirements

SQL Access DRDA

Network Environment ISO OSI IBM SNA
Upper Layer Protocol ACSE and Presentation IBM LU6.2
Security SQL Access and ACSE IBM LU6.2
Duplex Full Half

The intimate relationship between DRDA and
LU6.2 makes it difficult to determine clearly
DRDA's dependence on LU6.2. For example, it is
not evident if the LU6.2 naming, verbs and
protocols could be mapped to similar entities in
another network environment.

Network Management
DRDA defines specific alerts that are to be
generated by a client or server upon detection of

certain error conditions. Alerts are an SNA-specific
mechanism for notifying a network control center
that a specific problem has occurred. They are a
useful problem-determination tool for production
SNA environments.
An emerging OSI network management-related
standard specifies a mechanism for OSI networks
that is similar in function to alerts. At present, SQL
Access has not utilized this capability.

Security
SQL Access and DRDA provide security at a
number of levels. Both provide authentication based
on passwords. Additional security is provided by the
underlying networks.
Within SQL, a GRANT-REVOKE authorization
model is used regulates client access to SQL
objects.

Protocol/Message Complexity
It is difficult to assess the complexity of sets of
messages and protocols in an objective manner.
Complexity, in this case, affect the client and server
development in ways such as: developer learning
time, implementation time, implementation
difficulty and the chances for successful
implementation of a client or server. Two aspects of
protocol and message complexity are examined:
message content and encoding, and request chaining
and asynchrony.

Message Content and Encoding
The message contents and encodings used by SQL
Access are defined independently because of the
clean separation of abstract and transfer syntaxes.
This separation is an aid to learning and dealing
with the SQL Access formats and protocols because
it permits one aspect to be focused upon, while
putting the other aspect temporarily aside.
SQL Access messages are specified by an ASN.1
module that may be input to an ASN.1 compiler to
automatically generate programs that encode and
decode messages. This automatic generation is a
tremendous jump-start for a client or server
implementation effort. The semantics associated
with the message content are described in the ISO
RDA specifications referenced by SQL Access, with
additional assumptions or implementor's agreements
where required.
By contrast, DRDA combines the message content
with the encoding. The message content, or a
portion thereof, is described along with detailed
information on its encoding, including hexadecimal
constants and diagrams illustrating the structure.
DRDA specifies the content and encoding for the
portions of messages that it defines. Much of the

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 9

remaining definition comes from DRDA-specific
extensions to DDM and FD:OCA.
These fragmented definitions preclude software
tools that automatically generate message encoders
and decoders. The large number of constants and
table look-ups required by a DRDA implementation
must be either entered by hand, or possibly obtained
from IBM through a special arrangement.
The number of sources for descriptions of message
content and encoding requires the DRDA
implementor to gradually become an expert in all
the IBM architectures involved. Unfortunately, the
relevant IBM architecture documents are the only
printed source of information. The complexity
involved is certain to require access to one or more
experts on the subject. Today, the only DRDA
experts are architects and key engineers at IBM.

Request Chaining and
Asynchrony
SQL Access assumes that the underlying network
provides full-duplex data transfer – and most
networks do. The SQL Access protocol rules permit
the client to send database requests without waiting
for a previous database request to complete. By
allowing asynchronous requests, the need for a
request chaining mechanism is significantly
reduced. This helps to simplify client design
because there are very few rules that constrain the
client's issuing of database requests.
The half-duplex data flow in LU6.2 significantly
constrains DRDA. The result of this is that DRDA
includes description of turn-to-send processing in
the actual architecture specification. DRDA
introduces a set of rules for chaining a series of
requests together. Using request chaining more that
one request can be sent during a single turn to send.
This helps to reduce the performance degradation
associated often associated with half-duplex
communication, but adds to complexity to the
protocol and client design.

Protocol/Message Efficiency
The efficiency of a protocol is difficult to assess
objectively without empirical measurements. In this
section, some protocol characteristics that are
believed to significantly affect performance are
examined. These characteristics are: bandwidth
utilization, repeated operations and asynchronous
requests.

Bandwidth Utilization
Both SQL Access and DRDA use fairly bulky
encoding schemes that include a significant amount
of overhead. DRDA includes optimizations such as
the re-use of metadata descriptors. The SQL Access

BER compresses data values under certain, common
circumstances.

Repeated Operations
Support for repeated operations is critically
important for remote database access protocols.
Efficient transfer of the rows of a table cannot be
done at an acceptable rate using a protocol that
cannot fetch or insert n rows at-a-time.
DRDA supports the concept of block fetch in which
the unit of data retrieval is a block that may contain
more that one data row. While this method is
effective for retrieving data from a server, it does
not address the case where a number of rows must
be INSERTed into a table at the server. This bulk
INSERT capability is not available in most SQL
variants used by SQL application programmers, but
it can and will be used by tools and utilities that
issue database requests directly.
SQL Access defines a repetition count mechanism
that permits any operation to be repeated one or
more times. Each repetition may use a different set
of input parameters, if desired. Through this
mechanism, higher throughput data transfer can be
achieved for both reads and writes.

Asynchronous Requests
Asynchronous requests are those that can be
submitted to the server by the client without having
to wait for some event such as the completion of a
previous request or a turn-to-send. Precompiled
SQL applications cannot take advantage of
asynchronous requests, but other types of
applications, and the underlying client software, can
achieve significant performance improvements
when asynchronous requests are permitted. Only the
database manipulation requests, that occur after
connection set-up, are of interest.
A SQL Access client may issue asynchronous
database requests to a server whenever it desires,
provided that no more than 32 operations are
outstanding at any time.
As discussed earlier, DRDA is constrained by the
half-duplex nature of LU6.2. This means that a
DRDA client may only send a database request to
the server when all responses to previous requests
have been received, and the client is granted the
turn-to-send. This could result in significant delays
for a client that received many asynchronous
requests from some external stimuli.

Transaction Co-ordination
In their current state, both SQL Access and DRDA
support only a single-phase, single-server
transaction commit. Clients can invoke many
servers, but the commitment of these servers is not

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 10

co-ordinated. As a result, only a single client-server
pair can be involved in an atomic transaction.
SQL Access, because it is based on RDA, will
inherit sophisticated multi-site transaction co-
ordination (two-phase commit) when the ISO
Transaction Processing (TP) effort becomes a
standard. RDA is already poised to exploit ISO TP.
DRDA will provide a definition for its approach to
two-phase commitment in future levels. DRDA may
take advantage of the two-phase commit protocol
already supported by LU6.2.

Packages
DRDA introduces the concept of packages,
persistently defined sets of one or more SQL
statements stored at a DRDA server. Once a client
has created a package at a particular server, it
invokes individual statements one-at-a-time by
identifying a package and a statement contained
within. A client cannot execute any database
language requests without using an existing package
at the server. The creation of packages would
typically be performed by a DBA, so a manual step
is likely to be required before a client can access a
particular server.
A DRDA server must support the creation,
invocation and management of packages. The server
must retain the definition of a package and its
contents. Servers may compile the SQL statements
contained in a package at the time a package is
created. In any event, a server must be able to
tolerate SQL statements that it does not understand
in packages that it manages, because the client
application may create the same package at more
than one type of server.
Packages are good for pre-planned, pre-compiled
SQL in which a client accesses the same server in
the same way, day after day. Packages are an
inconvenience for ad hoc and decision support
applications which dynamically attach to a server.
With DRDA, a client must use packages to execute
SQL statements – even if the client uses only
dynamic SQL.
It is important to note that DRDA packages are not
stored SQL procedures. The unit of invocation is a
single SQL statement, and there are no flow control
or error handling capabilities.
Packages or some form of persistent SQL will likely
to be added to RDA, based on a proposal by IBM.
Persistent SQL is a Phase II work item of SQL
Access. ISO SQL has stored procedures as a work
item. When these standards are formalized, they will
become part of the SQL Access protocol.

Summary
SQL Access is based on international standards in
which all companies can participate. It uses a
common-subset approach – a single language,
protocol, and encoding scheme is used universally.
All servers speak and understand this Esperanto for
SQL access to remote data. Many server-specific
features can still be exploited using an escape
clause, if desired. SQL Access is defined for the
ISO standard network, OSI; but it can be redefined
for any network that supports full-duplex
communication sessions. Portability comes from the
use of ISO standard SQL and X/Open portability
guidelines.
DRDA is defined by IBM. It uses an anything-goes
approach in which the client must be aware of the
underlying data manager at each server. The
receiver-makes-it-right encoding model optimizes
interaction between similar platforms; but requires
many different encoding formats be implemented
when dissimilar platforms interact. It does not
address portability beyond the IBM domain, and is
dependent on SNA communication networks.
SQL Access and DRDA solve similar problems, but
have different goals and orientation. Both
approaches can be made to work in any situation.
DRDA is optimized for a homogeneous network.
SQL Access is optimized for heterogeneous
portability and interoperability.

References
[1] Structured Query Language (SQL), X/Open
document, XO/PRELIM/91/030
[2] SQL Remote Database Access, X/Open
document, XO/SNAP/91/030
[3] ISO IS 9075:1989 - Database Language SQL
(equivalent to ANSI X3.135-1989; also known as
SQL-89)
[4] ISO DIS 9075:199x – SQL2 Draft International
Standard (equivalent to ANSI X3.135-199x)
[5] ISO DIS 9579-1 - Information Processing
Systems - Open Systems Interconnection - Remote
Database Access - Part 1: Generic Model, Service,
and Protocol and SQL Specialization

[6] ISO DIS 9579-2 - Information Processing
Systems - Open Systems Interconnection - Remote
Database Access - Part 2: SQL Specialization)
[7] IBM Distributed Relational Database
Architecture Reference (SC26-4651)
[8] IBM Systems Application Architecture (SAA)
Common Programming Interface Database Level 2,
Reference (SC26-4798)
[9] ISO IS 8824 - Information Technology - Open

SQL Access and IBM DRDA A Comparison in a Multi-Vendor Setting

© 1991 Digital Equipment Corporation – all rights reserved 11

Systems Interconnection - Specification of Abstract
Syntax Notation One (ASN.1)

[10] ISO IS 8825 - Information Technology - Open
Systems Interconnection - Specification of Basic
Encoding Rules (BER) for Abstract Syntax Notation
One (ASN.1)

Acknowledgements
The authors wish to thank the many individuals
from database vendor and user companies for their
valuable reviews of the material in this article.
Special thanks to Richard Hackathorn for his
numerous reviews and helpful comments.

Trademarks
IBM, Systems Application Architecture, SAA, DB2,
SQL/DS, OS/2 EE, AS/400 and OS/400 are
registered trademarks of International Business
Machines Corporation.
Intel is a trademark of Intel Corporation.

