RJ2450(32255)1/15/79
Computer Science

Research Report

A SHARED SEGMENT AND INTER-
PROCESS COMMUNICATION FACILITY
FOR VM/370

J. N. Gray
V. Watson

IBM Research Laboratory
San Jose, California 95193

This report is a revised version of RJ 1579.

zgﬁ Research Division

Yorktown Heights, New York *' San Jose, California *

Zurich, Switzerland

J. Grouz/

Copies may be requested from:

IBM Thomas J. Watson Research Center
Post Office Box 218

Yorktown Heights, New York 10598

RJ2450(32255)1/15/79
Computer Science

A SHARED SEGMENT AND INTER-
PROCESS COMMUNICATION FACILITY

FOR VM/370
J. N. Gray
V. Watson

IBM Research Laboratory
San Jose, California 95193

ABSTRACT: VM/370 has been modified to allow memory sharing and
signalling among several virtual machies. This document describes
the design, principles of operation and implementation of these
changes and also serves as a user's manual for the enhanced system.
Memory sharing is on a segment basis. Inter-process communication
is based on the multiprocessing instructions of System 370.

This report is a revised version of RJ 1579.

TABLE OF CONTENTS

PART O: OVERVIEW
PART I: INTER-PROCESS COMMUNICATION FACILITY

I.1 Principles of QOperation
I.1.1 The Signal Processor Instruction
I.1.1.1 Function Definition
I.1.2 The Store Processor Address Instruction

1.2 Implementation
I1.2.1 Relation to Previous Work
1.2.2 Outline of Implementation

PART II: DATA SHARING

II.1 Existing Facilities in VM/370
II.2 Sharing Primary Memory
I1.2.1 The Model of Memory Sharing
IT.2.1.1 The Quantum of Sharing
I1.2.1.2 The Sharing Mechanism

I1.3 Principles of Operation

I1.3.0 General Information

I1.3.1 Defining a Shared Segment

I11.3.2 Releasing a Shared Segment

I1.3.3 Linking a Shared Segment

I1.3.4 Detaching a Shared Segment

I1.3.5 Query Memory and Query Shared Segments
I1.4 Implementation

I1.4.1 Outline of Implementation

II.4.2 Performance Issues

PART III: REFERENCES

APPENDICES:
Appendix A - Signal Processor Orders
Appendix B - Extended External Interrupt Structure
Appendix C - Signal Processor Status Information
Appendix D - Outline of Changes for IPC Implementation
Appendix E - Qutline of Changes for Segment Sharing

Implementation

0. OVERVIEMW

VM/370 has been modified to support an experimental multi-user
data management system [Astrahan]. In particular the following
facilities were added:

* Dynamic sharing of primary memory among virtual machines.

¥ Inter-process communication among virtual machines.

VM/370 allows machines to dynamically share disks. However, VM
was modified to allow wusers to <concurrently access common
segments of primary memory. This avoids the update problems
inherent in multiple copies of shared disk data being mapped into
different primary memories. Read-Write shared segments allow all
users to see common data in primary memory and locking may have
the granularity of a byte rather than of a disk page or larger
physical unit.

Since the machines share data, they must synchronize their reads
and updates via some form of inter-process communication.
Machines must be able to SIGNAL and WAIT for one another. The
use of these primitives to produce a transaction structure,
locking protocol and recovery mechanism is documented in
[Astrahanl],

The problem of authorizing access to these facilities is handled
as follows: Two new privileges, DBSHARE privilege and MONITOR
privilege Wwere added to the system. A process must have DBSHARE
privilege in order to send or receive .a signal via the
inter—-process communication facility, create or destroy a shared
segment owned by that process, link a shared segment or exercise
the commands which query the status of shared segments. Further,
shared segments are protected by passwords. One must know the
passwaord to link a segment unless he is the owner (creator) of
the segment. MONITOR privilege allows one machine to create,
destroy, link and detach shared segments to and from other
machines. Both DBSHARE »privilege and MONITOR »privilege are
controlled by the VM administrator when he defines machines in
the system directory.

In proposing changes to VM/370 we have been conservative.
Wherever possible we have adopted an existing definition (e.g.
Signal Processor instruction for inter-process communication)
rather than inventing a new feature. WHhere no acceptable
facility exists we have proceeded by analogy with 'similar'
mechanisms found in VM7370. In particular, segment sharing is
designed in analogy to minidisk sharing in VM/370.

The changes described here became part of the "floor" VM system
at San Jose in 1975 and have been in use at several sites since
then. It runs wWwith Releases 3, 4, and 5 on VM,

Disclaimer: We wish to emphasize that the VM/370 modifications
described in this report have been developed for our experimental
environment, and are not generally available.

I.1 Principles of QOperation

As mentioned above, the inter-process communication that we have
added is based on the processor signalling and response feature
of the multiprocessing facility provided by the IBM Systems7370.
We also implemented some extensions to the Signal Processor
instruction and the external interrupt architecture. The
sections dealing with the architecture are patterned after the
IBM Systems/370 Principles of Operation [System 3701, The reader
is assumed to have an understanding of System/370 as well as some
knowledge of the internals of VM/370 [VM/370]).

I.1.1 The Signal Processor Instruction

The 370 processor Signal Processor instruction facilitates
communication among processors in a multiprocessor system. It
provides for transmitting and receiving the signal, decoding a
set of assigned order codes, performing the specified operation
and responding to the signalling processor.

SIGNAL PROCESSOR

SIGP R1,R3,D2 (B2) (RS)

An eight-bit order code in the second operand and a parameter in
the first operand are transmitted to the machine designated by
the processor address contained in the third operand. The result
is indicated by the condition code and may be detailed by status
assembled in the first operand.

The address of the register containing the 32-bit parameter is
odd and is equal to Rl or one larger.

The second operand contains an eight-bit order code in bits
24-31., Bits 8-23 of the second-operand are ignored.

The register designated by the third operand contains a 16 bit
binary number which forms the processor address; High order bits
are ignored.

The resulting Condition Code:

Order code accepted

Receiver status stored
Receiver is busy

Receiver is not operaticnal or
privilege exception

W= O

On execution of the instruction, if the condition code is zero,
no status is returned and the register designated by the first
operand remains unchanged. If condition code of one was set,
status information is generated and returned in the register
designated by the R1 field.

I. INTER-PROCESS COMMUNICATION FACILITY

If two or more processes share updatable storage they need some

mechanism to solve the readers and writers problem (to
synchronize their reads and updates so that no inconsistent data
is read and no updates are lost). The 370 provides atomic

instructions (Test and Set, Compare and Swap) which allow the
implementation of semaphores and queues [System 370, Appendix I].
Using these instructions, two or more processes can synchronize
with one another.

If one process finds a semaphore set or a queue non—-empty then
the process may have to wait. The forms of waiting can be
dichotomized as:

Busy wait: in which the waiting process continually polls the
queue seeing if its turn has come.

Interrupt wait: in which the waiting process is suspended and
waits for a signal that it can proceed.

We have opted for an interrupt wait mechanism because it uses
less processor time and because it allows a fair resource
scheduler. We wanted a SIGNAL/WAIT mechanism which is both
simple and fast (less than 5000 instructions to send and receive
a signall). Given these criteria, we decided to add simulation of
the 370 Signal Processor Instruction to VMs/370 [System 370].

SIGP is a System 370-multiprocessor option instruction. It
allows one processor to send various orders to another, including
an external interrupt. This provides a signalling facility. By
loading a PSW with external interrupts enabled and the wait bit
set a second processor can wait for such a signal. Preliminary
tests indicate that such an exchange requires 6000 370

instructions.

The Signal Processor (SIGP) instruction has many bells and

whistles for inter—-process communication. It has things like
Start, Stop, External Call, as well as more esoteric order codes
like Initial Microprogram Load. It is designed to allow one
processor to control another. This is a rather privileged

operation and so in our VM/370 implementation it is authorized as
follows: To be able to communicate at all both machines (the
sender and receiver) must have DBSHARE privilege. If the order
code is 'sensitive' the sender must also have MONITOR privilege.
External calls are not sensitive, but all other orders are.

VM has been modified to assign a unigue processor address (two
bytes) to each virtual machine at login time so that SIGP's can

be addressed to particular machines. Thereafter, the processor
can discover its address by executing the Store Processor Address
instruction (STAP), a standard 370 instruction which we have
added to VM/7370's repertoire of simulated privileged

instructions.

An extension to the QUERY command (QUERY CPUS) displays the
processor address of each user logged into the system.

I.1.1.1 Function Definition

System 370 describes tuwelve orders for communication among
Processors. The orders are specified in bit positions 24-31 of
the second operand address of the Signal Processor instruction.

We have implemented an additional order:
External Call with Parameter - Code O0D.

As mentioned above, the sender and receiver must have DBSHARE
privilege. If the type of order is sensitive, the sender must
have MONITOR privilege (see table below). If a violation is
detected condition code 3 is set

The orders are encoded as follows:

} code order privilege]

| 00 Unassigned |

| 01 Sense S |

[02 External Call S |

| 03 Emergency Signal S |

I 04 Start M I

| Q5 Stop M |

| 06 Restart M |

] 07 Initial Program Reset *]

I 08 Program Reset M |

! 0% Stop and Store Status M]

] 0A Initial Microprogram Load x |

i 0B Initial processor reset * |

| ocC processor reset * [

| 0D External Call w/Parameter S |

! |

I S DBSHARE |

! M MONITOR !

| * Not supported |
Appendix A describes in detail the Signal Processor orders. The
external-interruption conditions generated by the Emergency
Signal, External Call and the Extended External Call (with
parameter) are described in Appendix B. Appendix C details the

status information generated by the Signal Processor instruction.
I.1.2 The Store Processor Adress Instruction

Each virtual machine is assigned a unique two-byte address at
logon. A processor is designated by specifying this address in
the processor address field of a Signal Processor instruction.
The processor signalling an emergency signal or external call is
identified by storing this address in the processor address field
with the interruption. A program can determine the address of
the processor by means of the instruction Store Processor
Address.

STAP D2(B2) (S

The address (2 bytes) by which this processaor is identified (in a
multiprocessing system) is stored at the halfuword location
designated by the second operand address.

1.2 Implementation
I.2.1 Relation to Previous Work

In implementing the inter-process communication in VM/370 we uwere
very fortunate to obtain a version of Virtual Multiprocessor
support for VM/370. The Virtual Multiprocessor system was
intended to support vsSrs2 Rel.2 development. The System was
developed in Poughkeepsie by Tom Gilbert (the original code for
the SIGP was written by Peter Sih in San Jose).

Qut of this system we incorporated into our system the code
dealing with the privileged instruction simulation support for
Signal Processor and Store Processor Address and added code to
support the Extended External Call. We could not use any of the
other changes as they dealt primarily with support of
multiprocessors and had been written for Release 1 of VM.

I.2.2 Outline of Implementation

We have added a new module to VM/370 (DMKAES) which contains the
the Signal Processor simulation. The directory program has been
modified to recognize two new CP command privilege levels to
safeguard the use of inter-process communication (and segment
sharing). We also added code which assigns processor addresses
to users logging into the system for use in the SIGP instruction.
Finally, we added the new CP console command to display processor
addresses of all users.

For a detailed description of changes to VM/370 see Appendix D.

1T, DATA SHARING
II.1 Existing Facilities in VM/370

VM/7370 has a facility for multiple users to read-share common

segments of primary memory. This Named System facility is only
intended for the sharing of re-entrant code among users so that
there is at most one copy of the code in primary memory. The

named system facility does not allow read-write shared access to
primary memory (in fact much of the complexity of the design is
necessary to prevent users from updating the shared system).
Hence it is not appropriate for our needs.

Release 3 of VM added support of discontiguous saved segments.
Although they provide more flexibjlity - vyou can attach and
detach segments to and from your virtual machine - they do not
have read-write access and must be named and saved in much the
same wWway as the Named Systems.

II.2. Sharing Primary Memory

OQur goal was to allow multiple virtual machines to concurrently
read and wWwrite common primary memory areas and yet allow them to
also have private memory.

II.2.1 The Model of Memory Sharing
II.2.1.1 The Quantum of Sharing

First we argue that a page table is the appropriate unit of
sharing. We proceed by analogy to the hardware and to VM/370:
the unit should correspond to a logical model of the physical
resource. The 370 Dynamic Address Translation hardware depends
directly on the Segment Table and the Page Table and of course on
page frames. Thus the candidates for the quantum of sharing are
page, page table (= segment) or segment table (= address space).
The smallest unit of sharing would be a 4K page. Sharing such a
small quantum would require substantial bookkeeping on each page
frame to record its global name, password and for each shared
page, its current location. Also there are some obscure
technical problems with having multiple page and swap table
entries describing the same page. Since we expect to be sharing
aggregates of pages we have decided against a page 1in favor of
the larger aquantum of a page table. Using page table sharing,
one can simulate the sharing of segment tables among machines by
giving eacth machine a separate copy of the same segment table.
(There is a problem about giving each machine the same page
zero.) The <converse is not true, however; if one could only
share segment tables then two machines would not be able to share
memory and have some private memory. For fthese reasons we choose
fo have page tables as the smallest unit of sharing.

I1.2.1.2 The Sharing Mechanism

In keeping with the spirit of VM/370, shared segments are treated
as logical devices. Each shared segment has an owner, a name and
a password. A shared segment is a volatile storage medium which
may be read and written by several machines but which disappears
at each system shutdown or crash. Access to +the segment is
controlled by the password. This is in analogy to the way
minidisks are shared/protected among users in VM/370.

The CP component of the system is not responsible for the
preservation of these segments. That is, both the contents and
the definition of a shared segment are volatile. Checkpoint and
recovery of the contents of the shared segments are the
responsibility of the user machines and each segment's owner.

All shared segments are 64K bytes long. A shared segment is
created when a user defines one of his private segments to be
shared giving it a name and a password (SEGMENT DEFINE). The
initial contents and keys of the segment are inherited from this
private segment in the guner's address space. After a segment is
defined, any machine with the password may link the segment
(SEGMENT LINK), thereby binding the segment to its virtual memory
at a specified segment slot. A machine can implicitly or
explicitly execute a SEGMENT DETACH command which replaces the
shared segment with a3 private segment. DEFINE STORAGE, SYSTEM
RESET, SYSTEM CLEAR, LOGOUT and IPL implicitly detach all shared
segments from a machine. SEGMENT RELEASE is identical to SEGMENT
DETACH (it is included for symmetry). Segments are deallocated
when they are no longer linked by any machine.

When a machine is created, it has a memory consisting of a number
of private segments. It may vary the number of segment slots it
has by a DEFINE STORAGE command. Thereafter, the machine can
link any segment (for which it has the password) to any slot of
its segment table (except slot zero). Once a machine has linked
to a segment, the machine has read-write access to all bytes of
the segment and its storage keys. It may synchronize with cocther
machines by using the mechanisms provided by the inter-process
communication facility.

Thus we have described:
U The unit of sharing: a page table = 64K bytes.
U The authorization scheme: passwords.

. The definition and binding mechanism: SEGMENT DEFINE, LINK,
DETACH and RELEASE.

..10_

I1.3 Principles of Operation

II1.3.0 General Information

The Segment Sharing facility is handled through a new CP command.
In order to use the segment sharing command, a user must have D
privilege, 1.e. the DBSHARE option in his/her machine description
in the directory.

Displaying shared segment definitions -

Issuing the 'QUERY SHARES' command will list all shared
segments in the system.

Displaying links to shared segments -~

'QUERY SEGLiIinks segname' will display all 'userids' linked
to a specified segment.

Displaying memory -

'QUERY MEMORY' command will display the contents of the

user's segment table. If the memory contains shared
segments, the name of the shared segment and the owner are
displayed. Non—-shared segments are displayed marked as
"private' or 'invalid'.

Defining a3 segment -

A user may define any segment of his/her current virtual
memory as shared, with the exception of segment zero. Once
a segment is defined it remains part of the system until the
last user linked to the segment logs off.

Deleting (releasing) a shared segment definition -

An owner may delete shared segment definitions from the
system provided no one else is linked them.

Deleting shared segment definitions also releases the shared
page and swap tables, replacing them with a3 private segment.

Linking a shared segment -

In order to link to any shared segment in the system, the
user must know the password. Once a segment is linked, it
becomes part of the user's virtual memory space wWith read
and wWrite access. Linking can only be done in the user's
current memory. This means that a shared segment would
necessarily overlay some existing segment.

Detaching a segment -

On detaching, shared segments are replaced by new, initially
empty private segments. If the use count of a segment being
detached goes to zero, the segment definition (SHRTABLE) is
also released.

-11-

Defining a Shared Segment
SEGment DEFine

Privilege - DBSHARE

The SEGment DEFine command allows a user ta declare

segment of his virtual storage as shared.

a

Segment names are unigque acraoss all machines, and only one

shared segment can be defined for a given page table.

The format of the command is:

SEGment DEFine |userid| XXX <AS> segname password (NOMSGE)

| * J

where:

userid is the user identification of the virtual machine
in which the shared segment is being defined. (A
machine has to have MONITOR privilege in order to
issue SEG DEFines for segments in other machines.?)
The user denoted by userid must be logged on.

* self

XXX is the segment number (in hexadecimal) which is to

be defined as shared.

segname is the one to s5ix character name which is

assigned to the segment. The keyword <AS> may
omitted. .
password is a one to eight character string which is to

the password to linking the segment.

NOMSGE suppresses the typing out of responses.

Responses:

- Segment defined

- Invalid parameter

- User not on system

- Invalid segment number
Privilege exception

-~ Invalid password

- Invalid segment name

- Duplicate segment name
- Segment already shared

PO~V =O
I

p—

be
be

be

12

Releasing a Shared Segment Definition
SEGment RElLease
Privilege - DBSHARE

The SEG RElease <command is detaches the designated segment
from the designated wuser and deletes the definition of the
segment if it is not by others. The "hole” left by the
detach is replaced by a private segment. The "ALL' option
permits the release of all the shared segments defined and
presently linked to the user. If there are any other links
to the segment the definition is not deleted. SEGMENT
RELEASE is identical to SEGMENT DETACH.

The format of the SEGment RElLease command is as follows:

SEGment RELease |userid| |segname| (NOMSGE)

| * | lALL |
where:
userid is the user identification of the VM issuing the
command and must be the owner of the segment
unless the issuing machine has Privilege M.
* self
segname is the name of the segment to be released from the
system.
ALL indicates that all of the shared segments in
user's memory are to be released from the system.
The user issuing the command must be the owner of
the segments or have Privilege M.
NOMSGE indicates that typing out of responses is to be
suppressed.
Responses:
0 - Segment definition released
1 - Invalid parameter
2 - User not logged on
3 - Segment not defined
5 - Privilege exception
7 - Invalid segment name
10 - Segment not released
12 - Segment not linked

-13-

Linking a Shared Segment

SEGment LINK

Privilege - DBSHARE

The SEGment LINK command allows a user to replace a segment

of his virtual storage with a named shared segment.

The format of SEGment LINK command is as follows:

SEGment LINK luseridl|l segname <AS> XXX password (NOMSGE)

| % |

where:

userid is the user identification of the virtual machine
issuing the command (unless the issuing machine
has Privilege M. The user denoted by userid must
be logged on.

* self

seghname is the name of the shared segment to be linked.
The segment must be unique in the user's virtual
storage.

XXX is the number of the segment (in hexadecimal) to

password

NOMSGE

-

[l e BN I SRR) IRV o B SVIN O R ol e

be replaced. The segment must be valid.

is a one to eight character string that must match
the segment password in the shared segment
definition.

indicates that no responses should be typed out.
Responses:

Segment linked

Invalid parameter

User not logged on
Segment not defined
Invalid segment number
Privilege exception
Invalid password
Invalid segment name
Segment already linked
Segment already shared

-14-

BDetaching a Shared Segment

SEGment DETach

Privilege -~ DBSHARE

The SEGment DETach command allows a user to detach a shared

segment and replace it with a private segment.

The format of SEGment DETach command is as follows:

SEGment DETach |userid! |segname{ (NOMSGE)

| * I JAaLL |

where:

userid is the identification of the virtual machine
issuing the command (unless the issuing machine
has Privilege M). The user denoted by userid must
be logged on.

* self

segname is the name of the shared segment to be
detached.

ALL indicates that all of the shared segments linked
to the user are to be detached.

NOMSGE indicates that typing out of responses to be

suppressed,.

Responses:

- Segment detached

- Invalid parameter

- User not logged on
Segment not defined
- Privilege exception
- Invalid segment name
- Segment not linked

NN~ O
|

Query

Segment Links

QUERY

15.

Memory, Query Shared Segments, Query Cpuids and Query
Privilege - DBSHARE
Four new options have been added to the QUERY command. The

format of the command

Query

The options
are:

MEMORY

Response:

for the

is as follous:

| MEMORY |
| SHARES |
| CcPuUsS !
| SEGLinks segname }
of the

added functions QUERY command

displays the contents of the user's memory.

XXX NAME OWNER

where:
XXX is the segment number
NAME is the segment name if it is a shared
segment, otherwise marked 'private’'. It may
also be an 'invalid' segment or a segment
moved from the fast paging device ~
'migrate’.
OWNER is the name of the owner of the shared
segment; blank if 'private'.
SHARES displays all the shared segments in the system.
Response: name owner
CPUS displays the processor addresses of all the users

with DBSHARE

system.

Response:

Error Messages:
SEGLinks displays

"segname'.

Response:

Error Messages:

or MONITOR privilege logged into the
name processor address
Shared segments not defined
all userids linked to a shared segment

userid

segment not defined

16

I1.4 Implementation
II1.4.2 Outline of Implementation

The code for the segment sharing commands and related routines is
all contained in a new module, DMKSEG.

When a segment is declared as shared, a new shared segment
definition block (SHRTABLE) block is created and the page table
is flagged 'shared'. We have extented the SHRTABLE which is used

for both the Named Systems and Discontiguous Shared Segments, to
include the name of owner and password.

We have also added two new command privilege levels to control
access to the segment sharing commands as well as inter—-process

communication. Unfortunately, existing privilege classes in VM
could not be extended without considerable modifications. We
therefore added the privilege in the form of an option {like

ECMODE and REALTIMER).

For detailed description of the changes to VM see Appendix E.

ITII. REFERENCES

[11] Alex Chandra, Shirley Hsieh, 'SPY Users Guide', IBM
Research memorandum, IBM Research Laboratory, Yorktouwn
Heights, New York, 1974.

[2] Shirley Hsieh, Inter-virtual machine communication under
VM/370', IBM Research Report No. RC 5147, IBM Research
Laboratory, Yorktown Heights, New York, 1374.

[31] Anonymous. 'IBM System/370 Principles of Operation’',
Order No. GC22-7000-3, IBM Armonk, New York, 1974.

[&1] Anonymous. 'IBM Virtual Machine Facilitys370: Command
Language Guide for General Users', Order No. GC20-1804-2,
IBM, Armonk, New York, 1974.

[5] Lyn Wheeler, 'VM/370 extended virtual memory management',
unpublished memo, IBM Cambridge Scientific Center,
Cambridge, Mass., 1974.

-17-

APPENDIX A
Signal Processor QOrders
The SIGP orders are defined as follows:

Sense (Code 01): The addressed CPU presents its status to the
issuing CPU. No other action is caused at the addressed CPU.
The status, if not all zeros, is stored in the general register
designated by the RI1 field, and condition code 1 is set; if all
status bits are zero, condition code 0 is set.

External Call (Code 02): An External Call external-interruption
condition becomes pending during the execution of the Signal
Processor instruction. The associated interruption occurs when

the CPU is interruptable for that condition and does not
necessarily occur during the execution of the Signal Processor
instruction. The address of _the CPU sending the signal is
praovided with the interruption code when the interruption occurs.
Only one External Call condition can be kept pending in a CPU at
a time.

Emergency Signal CPU does not necessarily enter the operating

state during the e is generated at the addressed CPU. The
interruption condition becomes pending during the execution of
the SIGP instruction. The associated interruption occurs when

the CPU is not interruptable for that condition and does not
necessarily occur during the execution of the SIGP instruction.
The address of the CPU sending the signal is provided with the

interruption code when the interruption occurs. At any one time
the receiving CPU can keep pending one Emergency Signal condition
for each CPU of the multiprocessing system, including the

receiving CPU itself.

Start (Code 04): the addressed CPU is placed in the operating
state. The CPU does not necessarily enter the operating state
during the execution of the Signal Processor instruction. No
action is caused at the addressed CPU 1 f that CPU is in the
operating state when the order code is accepted.

Stop (Code 05): The addressed CPU performs the stop function.
The CPU does not necessarily enter the stopped state during the
execution of the SIGP instruction. No action is caused at the
addressed CPU {if that CPU is in the stopped state when the order
code is accepted.

Restart (Code 06): The addressed CPU performs the restart
function. The

-18~

CPU does not necessarily perform the function during the
execution of the SIGP instruction.

(The restart interruption provides a means for the operator or
another CPU to invoke the execution of a program. The CPU cannot
be disabled for this interruption.

A restart interruption causes the old PSH to be stored at
main—-storage location 8 and a new PSW to be fetched from location
0.

The restart interruption is initiated by activating the restart
key on the system console. In a multiprocessing system, the
operation can alsco be initiated at the addressed CPU by issuing
Signal Processor specifying the Restart order.)

Initial Program Reset (Code 071): The addressed CPU performs
initial program reset. The execution of the reset does not
affect other CPUs and does not affect channels not configured to
the CPU being reset. The reset operation is not necessarily
completed during the execution of the Signal Processor
instruction.

Program Reset (Code 08): The addressed CPU performs program
reset. (Currently not supported.)

Stop & Store Status (Code 90): The addressed CPU performs the
stop function, followed by the store-status function. The
store-status operation <consists in placing the contents of the
current PSW and the program—-addressable registers in permanently
assigned locations within the first 512 bytes of main storage.
The CPU does not necessarily complete the operation, or even
enter the stopped state during the execution of the SIGP
instruction.

Initial Microprogram Load (Code 0A): The addressed CPU performs
initial program reset and then initiates the
initial-microprogram—load function. (Not supported.)

Initial CPU Reset (Code OB): The addressed CPU performs initial
CPU reset. (Not supported.)

CPU Reset (Code 0C): The addressed CPU performs CPU reset. (Not
supported.)

Extended External Call (Code 0D): An Extended External Call
external-interruption condition is generated at the addressed

CPU, The interruption condition becomes pending during the
execution of the Signal Processor instruction. The associated
interruption occurs when the CPU is interruptable for that

concdition and does not necessarily occur during the execution of
the Signal Processor instruction. The address of the CPU sending
the signal and a parameter are provided with the interruption
code when the interruption occurs. In cur implementation, there
is no limit on the number of extended-external call conditions
that can be kept pending in the receiving CPU.

19

APPENDIX B

Extended External Interrupt Structure

The externsl interruption provides a means by which the CPU can
raespond to various signals originating either from within or from
outside of the system.

In BC mode the external interruption code is stored in bit
position 16-31 of the External 0ld PSH. In EC mode the interrupt
code is stored in locations 134-135.

Bits 6 and 7 of the interruption code, when one, indicate that
additional fields have been stored as part of the interruption
action. Bit 6, when one, indicates that the address of the
processor issuing the interruption has been stored in locations
132-133. When bit 7 is one, it indicates that a parameter has
been stored in locations 128-131,

An external interruption for a particular source can occur only
When the CPU is enabled for an interruption by that source. PSW
bit 7 and external submask bits in Control Register 0 have to be
on for an interruption to be caused. (The use of submask bits
does not depend on whether the CPU is in the BC or EC mode.)

External Interruptions generated by SIGP instructigns

On issuing a SIGP instruction three external interruptions may be
generated in the receiving CPU: the emergency signal, the
external call, and the extended external call (external call with
parameter). '

The external interruption classes may be extended by increasing
the number of distinct interruption conditions that can be
identified.

Emergency Signal

An interruption request for emergency signal is generated when
the CPU accepts the Emergency Signal order specified by a Signal
Processor instruction addressing this CPU. The instruction may
have been executed by this CPU or by another CPU with S
privilege. The request is preserved and remains pending in the
receiving CPU until it is cleared. The pending request is
ctleared when it causes an interruption and by CPU reset.

Facilities are provided for holding a separate emergency-signal
request pending in the receiving CPU for each configured CPU,
including the receiving CPU itself.

-20-

The condition is indicated by an external interruption code of
1201 (hex). The processor address of the CPU that issued the
Signal Processor instruction is stored at locations 132-133.

The subclass mask bit is located in bit position 17 of control
register 0. This bit is initialized to zero.

External Call

An interruption request for external call is generated when the
cPU accepts the External Call order specified by a Signal
Processor instruction addressing this CPU. The instruction may
have been executed by this CPU or by another CPU. The request is
preserved and remains pending in the receiving CPU until it is
cleared. The pending request is cleared when it causes an
interruption and by CPU reset.

Only one external call request, along with the processor address,
may be held pending in a CPU at a time.

The condition is indicated by an external-interruption code of
1202 (hex). The processor address of the CPU that issued the

Signal Processor instruction is stored at locations 132-133.

The subclass mask bit is located in bit position 18 of control
register 0. This bit is initialized to zero.

Extended External Call

As interruption request for an extended external call is
generated when the CPU accepts the Extended External Call order
specified by a Signal Processor instruction addressing this CPU.

The request is preserved and remains pending in the receiving CPU
until it is cleared.

The pending request is cleared when it causes an interruption and
by CPU reset.

Facilities are provided for holding more than one extended
external call pending, along with the processor address and
parameter, in the receiving CPU.

The condition is indicated by an external interruption code of
1303. The processor address of the CPU that issued the Signal

Processor instruction is stored at locations 132-133.

The sublcass mask bit is located in bit positon 28 of control
register 0.

Interrupt Priority

When the CPU becomes enabled for more than one pending request
the CPU applies the following procedure to determine which
request or requests to indicate.

Each request is assigned a binary collating number, and the

-21-

request with the smallest collating number is taken. If several
enabled requests have the same collating number, the interruption
codes are QORed, and all are presented together. Those requests
which are not enabled or which have a higher collating number are
not presented and remain pending. The collating number is used
only to determine which requests to present and is not preserved.

The collating number consists of four fields, assigned as
follows:

Name of Field Collating Assigned From
number bits

Class number 0-3 Interruption Code bits 0-3
Subclass 6-11 All zeros if class number

zero, Interruption code bits
8-15 if class number is not

zero
Modifier 12-15 Interruption Code bits 4-7
Processor 16-31 Processor Address

Address All zeros if interruption

code bit is zero

-22-

APPENDIX C

Signal Processor Status Information

Seven status bits are defined whereby the processor addressed by
3 signal processor instruction can indicate its response to the
designated function. The status bits and their bit positions in
the general register are as follows:

e gy +
| bit position | status bit |
P gy g +
| 8-23 | unassigned, zeros stored |
} 26 | external call pending]
| 25 | stopped |
I 26 | operator intervening |
[27 | check stop |
I 28 | not ready !
| 29 | unassigned, zero stored |
! 30 | invalid function I
i 31 | receiver check |

Status bits 24-28 indicate the presence of the <corresponding
conditions in the addressed processor at the time the function
code is received. The condition is indicated only in response to
the sense function or when the condition precludes the
successful execution of the designated function. Bit 31
indicates malfunctions detected during the execution of the
instruction, and the signaling of the condition is not dependent
on the function being initiated. The bits are defined as
follows:

External Call Pending: This bit is set to one when an external
call condition is pending for interruption in the addressed
processor due to a previously issued Signal Processor
instruction. The pending condition may be due to the same
or another processor. The condition, when present, is
indicated in response to sense of external call.

Additionally, for external call it means that the requested
interruption condition has not been generated.

Stopped: This bit is set to one when the addressed processor is
in the stopped state and the function code specifies sense.

Operator Intervening: This bit is set to one when the addressed
processor is executing certain operations initiated from the
console or the remote operator control panel. The

particular manually initiated operations that caused this
bit to e turned on depends on the model and the function
specified. The specified function cannot be performed and
is not initiated. The operator—- intervening status can be
signaled in response to all functions.

Check Stop: This bit is set to one when the addressed processor
is in the check stop state. The specified function cannot
be performed and is not initiated. The condition, if

Not R

Inval

Recei

-23-

present, is indicated in response to all assigned functions
except IMPL, program reset, and initial program reset.

eady: This bit is set to one when the addressed processor
uses relocadable control storage to perform the function and
the required microprogram 1is not present. The function is
not initiated. The <condition, if present, is indicated in

response to all assigned functions except initial

microprogram load.

id Function: This bit is-set to one when the addressed
processor receives an unassigned function code. No function
is performed at the addressed processor. When the addressed
processor is in the operator—-intervening, check- stop, or
not-ready state, either invalid function, the corresponding
condition, or both are indicated.

ver Check: This bit is set to one when the addressed
processor detects malfunctioning of equipment during the
communications associated with the execution of signal
processor, including receiving and decoding the function
code. This condition can be signaled in response to any
function code and indicates that the execution of the
function has not been and will not be initiated. The other
status bits are not necessarily valid. a machine-check
condition may or may not have been generated at the
addressed processor.

-24G—

table processor response to SIGP
_______________________________ e e ————————————
| state of access path or processor
o = e e o o e o o o e e o o e —————
none of the other conditions-------~-—-+-------rmmm v ———— +
Not ready——————=— = e + I
check-stop state-—————-~—ccmmmmm e - + | |
operator intervening——=———=mmmmem e + | I |
stopped-———=———-— e e - + | | I |-
external call pending—-=————=~=eeemmm e ———— + | [| | |
processor temporarily busy-——————-—-—-- + | | I [| l
processor not operational-—-------- + f [[{ [] |
access path busy--—--—=-=——------ + l I { I I l | |
------------------------------- + | | | [| | | | I
function | v v \ v v v v v v
——————————————————————————————— B T s it il et Rt et
sense 21 31 21 s 1] s] s 1| st s | 0
external call 21 31 21 s 4t 01 st sl s | 0
emergency signal l 21 31 2101l a0l s] s | s | 0O
start |l 21 3] 210} 01]l st s] s |0
stop ‘ 21312101 01s1is1s 10
restart | 21 31 210} 0] s | s | s {0
initial program reset | 21 3 fos2] o | 0 |oss] O | s | O
program reset l 2 1 3 jors21 0} 0 Jlorss) 0 | s | O
stop and store status ' 21 31 21 0] 0} s | s | s | 0
initial microprogram load | 2 1 3 jos21 0| 0 Josst 0 f 0 | O
unassigned function 21 3 b 2 1 il i tizsliszsliszs] i
iy gy g g 20 B S
0 - condition code 0 is set.
2 - condition code 2 is set.
3 - condition code 3 is set.
5 — the corresponding status bit is indicated, and condition

code 1 is set.
i - the invalid function status bit is indicated, and condition
code 1 is set.
0s72, 0/s, i/s =~
either of the two indicated actions may be taken,
depending on the situation and the model.

the order of the priority for the above actions is 2
due to access path busy, 3, 2 due to processor temporarily
bUSY} s, i, 0.

-25-

APPENDIX D

Qutline of Changes for IPC Implementation

In order to implement inter-process communication three CcP
modules were modified and a new module added. The user control

block (VMBLOK) and the directory creation program were changed as
well.

A brief description of the changes follows:

DMKPRYV

Recognizes SIGP instruction and branches to DMKAES for
signal processor simulation.

Simulates STAP -~ store processor address instruction:

DMKLOG

At logon time, assigns processor addresses to users which
have 'DBSHARE' or "MONITOR"? privilege in their machine
description.

DMKDSP
When reflecting external interrupts bits 6 and 7 of the
interrupt code are tested. If bit 6 is one, the processor
address is stored into location 132. If bit 7 is one, a

one word parameter ('XINTPARM' from the XINTBLOK) is stored

into location 128. Also the VMPEND bit in the VMBLOK is
reset.

DMKDIR

Two new privilege classes have been defined as options:
DBSHARE x'04', and MONITOR x'01°'.

These two new command privilege levels have been created to
limit the use of the SIGP instruction, especially the Stop,
Start, Reset and Restart orders.

VMBLOK

Two words in VMBLOK*, reserved for installation use have
been redefined as follows:

VMPRS DS 1F receiver status
VMPADR DS 1H virtual processor address
VMPCLS DS 1X additional command level

* bits defined in vmpcls
VMDBMON EQU X'01' special data base privilege
VMDBSHRE EQU X'04' standard data base privilege

_26..

PSA
External interrupt parameter defined.
INTEXP DS 1F SIGP parameter
DMKHVA
Diagnose X'150' was added which given a userid in RO and Rl
returns the corresponding processor address in R1l.
NEW MODULE -
DMKAES

This module simulates the Signal Processor instruction as
defined in the Principles of Operation.

The VMBLOK of the receiving (virtual) processor is located.
If the user is not on the system a condition code of 3 is

returned. The issuing processor is checked for MONITOR or
DBSHARE privilege. If neither is present, condition code 1
is returned. After the order code is checked for validity

a branch is made to the appropriate routine.

On return from simulating the order, XINTQUE is called to

set—-up an external interrupt. A CPEXBLOK is then created
and DMKSTKCP is called to stack the interrupt for deferred
execution. Return is made via the Fast Reflect entry of

the Dispatcher.,

-27-

APPENDIX E
Qutline of Changes for Segment Sharing Implementation

In order to implement Segment ~Sharing we added a new module
(DMKSEG) and made some very minimal changes to two existing
modules.

DMFCFC

Code has been added to recognize the SEGMENT command, as

well as four additional QUERY command functions. The
actual simulation of the commands is done in a new module -
DMKSEG.

DMKVMA

The updates to this module prevent the release ('unshare')
of a shared r/w segment, which is normally performed when
it is detected that a shared page is changed or about toc be
changed (Store, Trace & Adstop commands).

NEW MODULE

DMKSEG

This module simulates the SEGment DEFine, RELease, LINK and
DETach commands and the additional QUERY commands.

VM BLOCKS
The following block has been updated:
SHRTABLE - Named-Shared Segment Systems Table

An extension to this block adds two new fields:

* % % SHRTABLE - EXTENSION FOR SHARED SEGMENTS

»*

* 20 o, —— e e ———— +
% I SHRPASSHW !
* 28 e bt e et e - +
* | SHROWNER I
* 30 Fm e e ittt it e TP +
*

* % %

SHRPASSW DS cL8 SHARED SEGMENT PASSWORD

SHROWNER DS cL8 SHARED SEGMENT OWMER'S USERID

SHRTBLSZ EQU (*x-SHRABLE) /8 SIZE OF SHRTABLE IN DOUBLEWORDS

-28—

DMKDIR

Two new privilege classes have been defined as options:
DBSHARE x'04', and MONITOR x'01°',.

These two new command privilege levels have been created to
limit the use of the SEGment commands, and the ability to
apply SEGment commands to another machine.

