RJ2516(32946)4/26/79
Computer Science

Research Report

THE CONVOY PHENOMENON

Mike Blasgen
Jim Gray
Mike Mitoma
Tom Price

IBM Research Laboratory
San Jose, California 95193

May 1977 (Revised January 1979)

zgg Research Division

Yorktown Heights, New York - San Jose, California * Zurich, Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:

IBM Thomas J. Watson Research Center
Post Office Box 218

Yorktown Heights, New York 10598

RJ2516(32946)4/26/79
Computer Science

THE CONVOY PHENOMENON

Mike Blasgen
Jim Gray
HMike Mitoma
Tom Price

IBM Research Laboratory
San Jose, California 95193

May 1977 (Revised January 1979)

ABSTRACT: A congestion phenomenon on high-~traffic locks is described
and a non-FIFO strategy to eliminate such congestion is presented.

CONVOYS DESCRIBED

When driving on a two-lane road with no passing one often encounters clusters of
cars. This is because a fast-moving car will soon bump into a slow cne. The
equilibrium state of such a system is for everyone to be in a convoy behind the
slowest car.

In System R [Astrahanl, transactions often bump into one another when contending
for shared resources. This contention appears as conflicting requests for
locks. (You may know locks by the names semaphore, monitor, latch or queue.)
Tvpically, access to these resources follouws the protocol:

LOCK <resource>;

<operate on resource>;

UNLOCK <resource>;
If other processes request the lock while it is granted then they are placed in

a queue of waiters and suspended. When the lock becomes available, requests are
granted in first-come first-served order. Setting and clearing a lock cozts ten
instuctions if no waiting is involved. If waiting is involved,it costs 590

instructions plus two process dispatches (i.e. several thousand instructions).
(Note: the System R lock manager is much fancier than this [Grayl, JNaumanm.)

In what follows three statistics about a particular lock will be of interest:
The execution interval of a lock is the average number of instructions executed
between successive requests for that lock by a process. The duration of a lock
iz the average number of instructions executed while the 1lock is held. The
collision cross section of a lock is the fraction of time it is granted. In a
uni-processor the collision cross section 1is (duration/(duration+intervall)

ignoring the wait +time and task switching time if a request must wait. There
are three high-traffic locks in System R regulating access to the buffer peoecl,
recovery log and to system entry/exit. Estimates of these statistics for the
high traffic resources of System R are shown below.

o +

| RESOURCE | EXECUTION | DURATION | cross |

| | INTERVAL | HELD | SECTION |

| | C(instructions) | (instructions) | .

|mmm e frm e R e e pmmm |

| BUFFER POOL | 1000] 60 | 6% |

| ENTRY-EXIT | 1500 I 70 | 5% |

| LOG | 20000 | 300%] 1.5% |

ettt e katadate R o ————— +
¥ The log lock 1is sometimes held during a log write +to disk =so this is an

average.

In the remainder consider a hypothetical lock L with an execution interval of

1000 instructions, a duration of 100 instructions and hence a cross section of
10%.

Consider what happens if a process P! stops (goes into wait state) while it
holds high traffic lock L:

* All other processes will be scheduled and will more or less inmediatelvy
request L.
* Each such transaction will find lock L busy and so will wait for it.

The static situation is now:

* Pl is sleeping.
* All other processes are waiting for the lock.
lock L:
9% % ¥ %
¥ P1 ¥<-=-]P2|<=-=-|P3|<~-~~...<-~-—|Pn]|
2% % % %
holder convoy of waiters........

The dynamic situation is then:
¥ The system sleeps until P! wakes up.

* P1 runs and releases L (after 100 instructions).

* P2 is granted L by P1.

* P1 executes 1000 instructions more and then

¥ Pl requests L (again) but L is busy (because there are many processes ahead
of P1 in the queue and not all these processes will be dispatched before PI
re~requests L).

* Pl enqueues on the lock and goes to sleep.

In an N-process M-processor system, with N>>M, the lock queue will contain N-M
processes and each processes will have an execution interval of 1000
instructions. Thus the system is in a situation of lock thrashina. Most of the
CPU is dedicated to task switching.

This is a stable phenomenon: new processes are sucked into the convoy and if a
process leaves the convoy (for I/0 wait or lock wait), when it returns the
convoy will probably still exist.

CONVOYS IN SYSTEM R

We have observed the convoy phenomenon in System R. Convoys have also been
observed by others in MVS [MVS] and IMS [Obermark].

In System R on VM/370 a process can experience one of five flavors of wait: page
fault wait, I0 wait, lock wait, quantum runout wait, and time slice wait. lhen
a process stops waiting, it is marked dispatchable. When the dispatcher
dispatches a process it is given a guantum The process runs until it page
faults, deces an I/0, a lock wait or exhausts the quantum. At any of these tires
the dispatcher subtracts the consumed time from +the process time slice. If the
result is negative the process goes into time slice wait if the CPU is a scarce
resource. If the process still has some time slice left, the process goes into
wait state. The dispatcher could do this much faster, but VM/370 requires about
2000 instructions to switch processes.

Clearly, the duration of a high traffic lock should be kept to a minimum. System
R code follows the protocols:

* Mever lock wait while a high traffic lock is held.

* Never do I/0 while a high +traffic lock is held (the 1log 1lock is an
occasiconal exception to this.)

* Hever page fault while a high traffic lock 1is held (i.e. only access

frequently used pages.)

If these rules are followed and if I/0 is frequent enough =30 that almost every
gquantum ends with an I/0 wait or a low-traffic lock wait then the high traffic

locks should almost always be free when a task sleeps.

With probability P a process ends its quantum with an I/0 wait or a low-traffic
lock wait. P is very close to 1. However, 1-P is not zero if the scheduler is
pre-enptive (bescause the process may not do any I/0 for a long time thereby
getting quantum runout or it may page fault.) So if the lock is held 10% of the
time, some one will sleep holding the lock with probability 0.10¥(1-P). This
probability is small, but its consequsnces are so disasterous as to make it a
real problem. Namely, such an event will create a convoy on that lock.

Hence, the dispatcher should never interrupt a process holding a high-traffic
lock (low traffic locks do not create convoys). Put another way pre-esmptive
scheduling is bad for a transaction system. The consequance of pre-emgting a
process which holds a high traffic lock is that a convoy will imnmediately form
on the 1lock and that it will persist for a very 1long time. (Note that page
faults are a source of pre-emption).

Most of wus are stuck with a pre-emptive schedulexr (i.e. general purpose
operating system with virtual memory). Hence convoys will occur. The problenm

is to make them evaporate quickly when they do occur rather than have then
persist forever.

Before adopting the solutions outined below, 92% of lock waits were for the
three high traffic locks. After adopting +the solutions described below, lock
waits on high traffic locks were reduced by a factor of tzn and only 40% of lecck
waits were for the high traffic locks.

POSSIBLE SOLUTIONS

The simplest solution of all is +o run one transaction at a time. Then no
locking is required. However, our experiments indicats that even with convoys
the response and throughput of System R is improved by multi-programming. This
is because I/0 and computation can overlap and because short +transactions are
not delayed by very long ones.

The next simplest solution is to avoid locks. One can go a very long wav with
shrewd use of atomic machine instructions (compare and swar) and other
programming tricks. For example, the system entry-exit lock was eliminated bv
such techniques. We have done a lot of this, but have been unable to gcomnletely
eliminate high traffic locks from our progranms.

Another strategy is to reduce the traffic on locks by refining:
* the lock granularity (how much is locked),
¥ the lock mode (non-exclusivs requests).

To give an example of finer granularity, IMS was convoying on a lock which
controlled the 05AM buffer pool. ' By partitioning the buffer pool into disjoint
sub-pools and associating a lock with each sub-pool the esecution interval was
increased so that buffer pool convoys disappearsd. It waz replaced by conveys
on the "PI" and log locks. This demonstrates that eliminating one bottleneck
simply exposes the next one [Obermark].

To give an example of non-exclusive lock modes, observe that processes adding to
the System R log need not acquire it in exclusive mode. Rather, adders can get

it in shared mode and only processes which want to write the log to disk (a
ralatively rare svent) need acquire the log lock in exclusive mode.

Using non-exclusive modes reduces the probability P that one will wait for a
request, and refining the granularity (more different locks) increases the
execution interval between requests for the same lock (decreasing the traffic on
a particular lock).

These techniques make convoys less likely and less stable. But we suspect that
convoys will continue to occur. In particular, there was no easy way to fix
system entry-exit lock convoys using mode or granularity techniques (we had to
resort to special logic for this problem).

We also considered two strategies which seem to have few virtues: spin locks and
integration of the dispatcher and lock manager.

Spin locks come.in two flavors:
* Busy wait: holds the CPU until quantum runout.

* Lazy wait: branches to the dispatcher and tests the lock +the next time it
is dispatched.

Spin locks eliminate convoys (as explained below convoys are caused by
first~come first-served scheduling, spin lock¥s don't have FCFS the disciprline).
In one set of experiments we performed, busy wait locks increaszed systenm
execution time (elapsed) by 75%. Lazy wait locks increased execution time by
20%. That 1is, the CPU time wasted by spinning is greater than the cost of
convovs.

Another way to solve the convoy problem is to involve the dispatcher. HNotice in
the example that P1 stupidly .gave up the lock to P2. If P! had hung on to the
lock until it waited, and P2 did the same then the convoy uwculd flush itself
immediately. The obvious solution is to have the dispatcher know about locks

and have the dispatcher grant locks when tasks are switched. The argunents

against this approach are:

b The book-keeping associated with giving up a lock at task switch 1is
intimidating.

* For reasons of modularity, the dispatcher should not know about locks,
they are a higher level notion.

* The solution does not generalize to mnmultiple processors. ¥ The solution

does not address pre-emption due to page faults.

A SOLUTIO

The key issue of convoys is associated with the granting of locks in first-come
first-served order. S5So we elect to grant all lock requests in random order in
the hope that eventually everyone will get service. In theory, sone process
might "starve" (never be granted its request) but in fact the underlying
schaduler and the stochastic nature of real systems cause =2ach process to
eventually get service.

The proposed solution is:

¥ When releasing a lock, broadcast to all waiters that the lock is free:
DO
CONVOY=LATCH.QUEUE; /% atomic pair %/
LATCH=FREE; /% atomic pair ¥/

DO WHILECCONVOY -= NIL);
WAKEUP FIRST OF CONVOY; /% CAR of list %/
CONVOY = REST OF CONVOY; /% CDR of list »/

END;

END;
¥ lhen acquiring a lock:

DO WHILE (LATCH - MINE);

IF LATCH = FREE THEN LATCH = MINE;

ELSE
ENQUEUE ON LATCH:;
SLEEP;
END;

First consider the properties of this algorithm on a uni-processor. If a convovy
exists, the releasor (P1) of the lock will
¥ dequeue all menbers of the convoy from the lock.
* mark the lock as free.
* signal all members of the convoy.

Now the releasor continues to run (after all he just woke up from a wait and so
has almost a full quantum.) If he needs the 1lock again it :is free. If he goes
into I/70 or lock wait, he will not hold the lock. So with preobability P (>.9%9),
he will terminate with the lock free. Now one of the members of the convoy will
run (P2). He will start with the lock free and so he will ke able to acquire
it. (There is no queue on the lock.) With probability P he will terminate with

the lock free. If there are N processes in the convoy, it will disappear with
probability PN,

Now consider the multiprocessor <case. The logic above applies to waiters in a
convoy but there 1is another problem. If a lock is held 10 of the tims, then
the probability that two processors will bump into one another is .01. If they
do bump into one another, a convoy will forn. They will convoy on one another.
The multi-processor case is much like the page fault case: the other processors
look at +the lock at a random (and frequent) points. Hence they loock at it

during critical sections. The solution seems to be for the lock requestor to
spin for a few instructions in the hope that the lock will become fres. If the
lock does not free, the process should enqueue and sleep. This spin tine is

affected by the probability the lock is held, the number of processzors, the cost
of task switch, the +time to service interrupts, and the expected le2ngth of the
convoy. The worst case 1is immediately after a convoy is broadcast to. 500
instructions might be nice spin time for System R on two CPUs. ’One wonld =pin
for 500 instructions in the lock request operation.

Dieter Gawlick points out +that +the broadcast approach 1is likely to cause
contention whenever a convoy is breaking up. He cites the situation in which
all processes are waiting for the log 1lock being held by the chackpoint process
(in IMS Fast Path). When the checkpoint completes, the waiting processes will
all contend for the log lock.

Gawlick suggests that instead of broadcasting, simply mark the latch as free and

wakeaup only the first waiter in the queue. In this way the current holder and
first waiter can contend for the lock but access to the lock is approximately
first come first served. This solution is workable and in fact has been uzed to
solve a convoy problem of IMS. But our analysis indicates that all members of
the convoy will be woken up almost immediately if the latch has a short
execution interval because each unlock wakes up a new waiting process as it
marks the latch free. Hence both solutions seem acceptable.

REFERENCES

{Astrahan] Astrahan, et. al., "System R: A Relational Approach to Data
Management,” ACM TODS, Vol. 1,No. 2, June 1976, pp. 97-137.

[Gray] Gray J. N., Lorie R. P., Putzolu G. F., and Traiger I. L., "Granularity
of Locks and Degrees of Consistency in a Shared Data Base", Modeling in
Data Base Management Systems, Nijssen editor, North Holland, 1%76. rpp.
365-39¢.

[Nauman] HNzuman J. S., "Observations on Sharing in Data Base Systems"™ IBM
Technical Report TR 03.047, IBM Santa Teresa Lab., IBM, Coyote California.
May 1978. :

[MVS] 0SsV52 System Logic Library, Vol. 4, page 159, Form No. 5Y28-0716, IEM,
WMhite Plains, 19%977.

[Obermark] Obermark R.L., Personal communication, IBM Systems Center, Palo Alto
California.

