Jim Gray’s NTclusters Research Agenda

Jim Gray, Gray @ Microsoft.com

October 1995

My Research Agenda

My research project at Microsoft is to

Take a census of the many cluster efforts both inside and outside Microsoft.

Identify a specific project that we in San Francisco can execute.

Work with the NTclusters group in Redmond to bring key clustering features to NT.

This document is a manifesto for the project.

Why Clusters?

Two apparently different demands, WorkGroups and SuperServers, drive the need for commodity clusters.

WorkGroups: Each time a workgroup grows, it needs to add computing, storage, and network resources to support the new members. The least expensive way to buy computing is to buy a desktop. Each desktop wants to be able to see the printers, files, and network ports of the others in the workgroup. The workgroup administrator wants to be able to manage the resources, security, and versions of the entire workgroup from a single workstation.

SuperServer: Processors, memories, discs and networks are getting faster and cheaper at astonishing rates. Still, some problems are so large that they exceed the performance of any single processor, memory, disk, or network link. There is a great desire to build high-capacity servers from an array of commodity components. This array must be as easy to program and administer as a single computer

WorkGroup and SuperServer clusters are more alike than different. WorkGroup clusters tend to be more heterogeneous -- but this heterogeneity comes at the cost of greatly increased management costs. Automatic course-grained parallelism differentiates SuperServers, but the other problems of administration, growth, transparency, security, and availability, are the same for both worlds. WorkGroup parallelism is inherent -- it comes from many users. Some SuperServers have this same inherent parallelism. For example, a print, file, database, or transaction server receives many small and independent requests that can be serviced in parallel. Often, however, a SuperServer is asked to perform just one large task (data mining, utility,) which means that parallelism must be programmed into the application. One lesson we have learned is that only sophisticated software houses will explicitly write parallel programs. Everyone else expects the parallel execution and IO to be automatic.

One approach to building a SuperServer is to tightly couple a few devices together to provide more performance. Common examples of this are 4-way Intel-P6 symmetric multi-processor (SMP) or a 5-way disk array (RAID) or two 64 kb lines (ISDN). This approach is valid but there are limits to this scaleability:

The need for proprietary hardware to interconnect components.

The need for proprietary software to exploit components.

Hardware bottlenecks

Software bottlenecks

Fault containment within a large array of hardware and software components.

Despite these limitations, it is now common to build tightly coupled arrays with

	up to	10 processors

	up to	10 GB of RAM

	up to	100 disks

	up to	10 high-speed communications lines (T3 or ATM)

Much beyond these limits, the bottlenecks and fault-containment problems make tightly-coupled SuperServers unwieldy. Plans and prototypes for NonUniformMemoryArchictecture machines (NUMAs) supporting hundreds of processors. These machines may be programmed either as an SMP or software can map them as a shared-nothing multicomputer with very limited interconnect. If these NUMAs can be built with commodity hardware, then they may well be the platform of choice for SuperServers. Thus far, I have not seen a credible plan for a commodity NUMA (one that scales from 1 node to 1,000 nodes using commodity parts). NUMAs are unlikely to form the basis of a WorkGroup solution. This almost automatically rules them out of the commodity category.

Several companies have marketed successful SuperServers built as clusters. Each cluster node is a free-standing computer with its own resources and operating system. Each is a unit of service and availability. Each node owns and serves (provides services for) some disks, tapes, network links, database fragments or other resources. The clusters can grow by adding processors, disks, and networking. The cluster appears to be a single server computer. Tandem, Teradata, VMScluster, Apollo Domain, IBM (Sysplex and SP2), Intel Paragon, and TMC CM5 are examples of cluster architectures. VMScluster and the Apollo Domain are frequently used as workgroup systems as well as SuperServers.

These clusters were built by hardware vendors in a non-portable way -- requiring both specialized hardware and software. With the advent of commodity high-performance workstations and interconnects, the time has arrived to build cluster technology on a portable and commodity software base for both workgroups and SuperServers.

It is paradoxical that little cluster technology has emerged from either the UNIX or NetWare communities. Certainly NetWare has some cluster concepts (the registry, device transparency, single logon,..) but it is far from a complete solution (see below for a list of requirements). Clustering for the various UNIX products (AIX, HPUX, Solaris, OSF/1...) is even more primitive.

Long before I joined Microsoft I viewed NT as the natural vehicle for a commodity cluster operating system. NT is modern, portable, and has both work group and a server features. NT already has some cluster features in the domain concept (one user logon), the performance monitor (that can monitor all nodes of a domain), and the redirector (which maps local system calls to remote procedure calls and so gives some location transparency.) Some projects layered above NT will provide management (Starfighter SQL Server management) and load balancing (Viper transaction monitoring). The Tiger video server is an example of a special-purpose cluster application.

AT&T, DEC, Intel, Microsoft, Tandem, Sequent, and others are augmenting NT to have cluster features. In addition, applications like Informix Version 8 will soon provide an automatic data layout among NT nodes, and automatic parallel execution against the cluster.

�
Commodity Cluster Requirements

The main requirements for a commodity cluster are summarized here. One could write a volume on each of these topics.

Commodity Components: The most common cluster has one node, the next most common has two nodes, and so on -- Zipf’s law applies. The cluster should be built from commodity hardware and software components. You cannot buy ATM from RadioShack today, but you can buy 100Mb Ethernet, and ATM is only a few years off. You can certainly buy NT and even SQLserver or Oracle. Any workgroup cluster design must scale from one node to 1,000 nodes with the same hardware and software base. It must have scaleup and scaledown. There are huge economies in having the same design work for both small workgroups and for SuperServers. This is really a price-performance requirement.

Modular Growth: The cluster’s capacity can grow by a factor of a thousand by adding small components. As each component arrives, some storage, computation, and services automatically migrate to it.

Availability: Fault tolerance is the flip side of modular growth. When a component fails, the services it was providing migrate to other cluster nodes. Ideally, this migration is instant and automatic. Certain failure modes (for example, power failure, fire, flood, and insurrection) are best dealt with by replicating services at remote sites. Remote replication is not part of the core cluster design.

Location Transparency: The cluster’s resources should all appear to be local to each cluster. Boundaries among cluster nodes should be transparent to programs and users. All printers, storage, applications, and network interfaces should appear to be at the one node that the user or program currently occupies. This is sometimes called a single-system image. Transparency allows reorganizing data or resources by moving them to new nodes from busy nodes without disturbing users or applications.

Manageability: Ideally, each hardware and software module would be plug-n-play. Even so, the administrator must set policies stating who is allowed to do what, when periodic tasks should be performed, and what the system performance goals are. Short of this fully automated cluster mechanism, the system should automate much of the design, deployment, operations, diagnosis, tuning, and reorganization of the cluster. A large cluster should be as easy to manage as a single node.

Security: A cluster appears to be one computer. It has one administrator, one security policy and one authenticator. A process authenticated by one node of the cluster is considered authenticated by all other nodes.

Performance: Communication among cluster nodes must be fast and efficient. It must be possible to read at disk or ATM speed (100 MB/s) from anywhere to anywhere. This requires good software and hardware IO architecture. The hardware and software cannot have any bottleneck or centralized resource. Any centralized resource, even if it has a 0.1% utilization, will be saturated at a thousand nodes. The simple test of performance is that a thousand node system should run a thousand times larger problem in the same time (scaleup) or run a fixed sized problem a thousand times faster (speedup).

Automatic Parallelism: Architects have been building parallel computers since the 1960’s. Virtually all these systems have been useless because they were difficult to program. Users expect parallel execution to be automated. Print, mail, file and application servers, TP monitors, relational databases, and other search engines have all been commercial successes by hiding concurrent execution from the application programmer. Clusters must provide tools that automate most parallel programming tasks.

�
How does a Cluster Differ From a Distributed System?

 It may seem that a cluster is just a kind of distributed computing system -- like the world wide web or a network of Solaris systems or.... Certainly, a cluster is a simplified kind of distributed system. But, the differences are substantial enough to make cluster algorithms significantly different.

Homogeneity: A cluster is a homogeneous system: it has one security policy, on accounting policy, one naming scheme and probably is running a single brand of processor and operating system. There may be different speeds and versions of software and hardware from node to node, but they are all quite similar. A distributed system is a computer zoo -- lots of different kinds of computers.

Locality: All the nodes of the cluster are nearby and are connected via a high-speed local network. This network has very high bandwidth since it is modern hardware and software The bandwidth is inexpensive since it does not come from the phone company. It is reliable since it is in a controlled environment; and it is efficient since it can use specialized protocol stacks optimized for local communication. Communication in a distributed system is relatively slow, unreliable, and expensive.

Trust: The nodes of a cluster all trust one another. They do authentication for one another, they share the load, they provide failover for one another, and in general they act as a federation. A distributed system is more typically an autonomous collection of mutually suspicious nodes.

Ntclusters DRAFT: October 1995	Microsoft	� PAGE �1�

