WINGMAN�A Replication Service for Microsoft Access and Visual Basic

Brad Hammond

Microsoft Corp.

One Microsoft Way

Redmond, WA 98052-6399

bradha@microsoft.com

1. Overview

Wingman is the name for the replication technology available in the Microsoft Access 7.0 and Visual Basic 4.0 products�. It allows for both single-master and multi-master replica sets. In the single-master case, only the master can be updated, and updates propagate to the replicas. In the multi-master case, updates can be applied to any replica and then propagated to other replicas. Users can set up schedules by which replicas exchange updates, and users can request immediate synchronization with another replica. Users can work with replicas while they are disconnected and then synchronize later, which is very useful to laptop users who are traveling or telecommuting. All of the replicas are Microsoft Jet databases. (Microsoft Jet is the storage engine for both Access and Visual Basic.)

The correctness criterion is the standard one: If updates are turned off, then after a sufficient number of synchronizations, the replicas will be identical. In cases where the system cannot achieve this correctness criterion, error information is provided that can help administrators solve the problem. Later in this paper, I describe some situations in which replicas can diverge, and the type of error information that is provided. In multi-master replication, it is possible for two replicas to independently accept updates to the same row and have those updates specify different values for some columns. In this case, Wingman uses a reconciliation algorithm, which is described later in this paper, to ensure that all replicas will agree on the contents of the row.

As conflicts occur in multi-master replica sets, Wingman automatically determines a “winner” for each conflict. Replicas with updates that “lose” a conflict contain information that allows users to examine the winning and losing versions of rows, and make further updates if they want to override some aspect of the automatic resolution. Microsoft Access contains a conflict resolution wizard to do this, and Visual Basic users can use the same information to set up their own customized conflict resolvers.

Wingman allows schematic changes, as well as data changes. For example, users can add and remove columns, change datatypes, add and delete indexes, and add or delete tables, queries, and so on,. after they have already created multiple replicas. At any one time, only one replica is allowed to change the replicated schema. All changes to the replicated schema are automatically applied to other replicas during the database synchronization process. This allows people to use Wingman as a method of distributing application objects, such as queries, forms, and reports. In addition, Wingman allows all replicas to contain local tables and objects, as well as the replicated objects.

NOTE: This paper describes the functionality and some implementation details for the currently released version of Wingman. Certain aspects of the functionality and implementation details may change in future versions of Wingman.

2. Schema Changes

Much of the Wingman code deals with schema changes - disallowing changes to the replicated schema at any replica that is not designated as the Design Master, keeping a log of any changes made to the replicated schema at the Design Master, and applying the logged schema changes to other replicas during the synchronization process. Whenever two replicas synchronize, they first exchange any schema changes, so that both replicas have the same schema before any data is exchanged.

The creator of the replication tree is the original design master. The design-master token can move to another node via an architected API call. If the design master is destroyed, another node can recreate the design master token, but this is known to be a dangerous operation.

All changes to the replicated schema are added as rows to a special Wingman system table that is replicated at each node. Because the rows contain sequence numbers, changes are applied in order. This table is present in all replicas, so that if any two replicas are at different schema levels, the replica at the higher schema level can bring the other replica up to date. Users can set a parameter that controls how long rows should be kept in this table before they are deleted. If a replica is disconnected for so long that it needs to process schema changes that correspond to deleted rows, it is not allowed to synchronize with other replicas.

If a schema change cannot be processed at a replica, then a row explaining the problem is added to a special table, and the replica is marked as having had a schema problem. Whenever a user opens a replica through Microsoft Access, he or she is automatically informed if the replica has a schema problem. The same information is available to Visual Basic programmers to act on if they want.

Some schema problems are transient. For example, if a schema change adds a column to an existing table, Wingman must open the table exclusively. If another user has the table open, then the exchange will fail with a schema problem. This problem can be easily overcome by retrying the schema change when the database is not busy, although this may mean forcibly kicking users out of the database.

Some schema problems are less transient; for example, name collisions. If Wingman needs to apply a schema change that creates a table with the same name as a local table, it will fail. Although the problem can be overcome by deleting or renaming the local table, Wingman does not do this automatically. Interestingly, name conflict schema problems cannot be resolved by going to the Design Master and renaming or deleting the table in the replicable schema, because the replica tries to apply all of the schema changes in order: first creating the table with the original name, and then renaming it or deleting it. Thus, name conflicts have to be handled at the replica that is having the problem.

3. Data Changes

Wingman adds several system columns and indexes to all replicated tables. These are for two purposes: allowing Wingman to synchronize efficiently, and to detect or report conflicts.

3.1 System Columns that Help Synchronization

One system column that helps Wingman synchronize efficiently is an indexed GUID (Global Unique Identifier) column that identifies each row of each replicable table. If a row is newly changed in one database, Wingman uses the GUID to locate the version of the row in the other database, so that the update can be propagated. It also provides a standard way to store information as to which rows have been deleted from a table. Also, if two otherwise identical rows are inserted independently in two replicas, they will have different GUIDs and will both survive after updates have been propagated.

�

A Row

GUID: 1234512�
Generation

7�
Version

9�
Lineage

{Brad, 1}

{Allen, 5}

{Eric, 9}�
Actual Data�
�

Another system column that helps Wingman synchronize efficiently is an indexed generation column. This column acts as a logical clock indicating when a row was last updated at a given replica. Actual timestamps are not used for marking when changes occur, or deciding conflicts, and there is no dependence on different machines having approximately synchronized clocks. At a given replica, the generation numbers correspond to the order in which changes were performed; either as part of synchronization or by a user at that replica. Whenever a row is updated, (except for updates done by Wingman for synchronization purposes), the generation column for that row is set to 0. When it is time to synchronize, all of the rows with generation 0 are collected into one or more groups, and assigned generation values that are higher than all previously existing generations.

Each replica keeps track of the highest generation it has sent to each other replica, and the highest generation each other replica has sent to it. These provide starting points, so that each table can be scanned using the generation index to avoid looking at data that has already been shared with the other replica. The generations stored in a given row will differ across replicas, because the numbers at a replica reflect the order in which changes were processed at that replica.

Generation Table At Brad’s Node�
�
node�
last incoming generation�
last outgoing generation�
�
Brad�
100�
100�
�
Allen�
99�
99�
�
Eric�
97�
96�
�

Generation Table At Allen’s Node�
�
node�
last incoming generation�
last outgoing generation�
�
Brad�
99�
99�
�
Allen�
100�
100�
�
Eric�
97�
96�
�

For example, suppose replicas A and B each have 100 generations, the last generation B received from A was the generation numbered 99 at A, and A last received the generation numbered 99 at B. When A and B synchronize, A will renumber all of its generation 0 rows to be 101, and B will renumber all of its generation 0 rows to be 101. A’s generations 100 and 101 will be applied to B, where they will become generations 102 and 103, and B’s generations 100 and 101 will be applied to A, where they will become generations 102 and 103. At the end of the synchronization, both A and B will know of all 103 generations that the other replica has.

3.2 Detecting Conflicts

Conflicts are detected through a system column called the lineage, which represents the relevant change history of a row. Wingman automatically updates the lineage whenever a user updates a row. Because the lineage is a varying length binary column, which contains one entry for each replica that has updated that particular row, the number of replicas that perform updates determines the maximum size that the lineage can grow to. The entry consists of one part that identifies a replica and one part that is a version number, the last version of the row that was created by that replica. The version starts at 1, and only increases when that particular row is updated. For example, the lineage {(A, 3), (B, 1)} means that the row was first inserted at replica B, and that replica A subsequently updated the row twice. If B subsequently updates the item, the version becomes 4 and the lineage becomes {(A, 3), (B, 4)}. When Wingman is synchronizing databases, and it encounters a row that may have changed recently, it examines the lineage of each database’s version of the row. Here is a summary of the important cases. Suppose two nodes A and B are reconciling changes on some object:

Both rows have the same version, created by the same replica. There is no conflict and the rows should be identical, including the entire lineage. This may happen if a third replica made the change and propagated it to both A and B.

Both rows have the same version, but the versions were created by different replicas. There is a conflict, and Wingman stores conflict information in the database that created the losing version.

But, how does it pick the losing version? It seems to me that cases 2 and 3 are the same case.

The rows have different versions or different lineages. The row with the higher version will be kept as the “winning” version in both replicas, but it is necessary to look in the lineage of the winning row to see whether it already knew about the losing version. Consider any node X that appears in either lineage. The possibilities are:

winner({X v#}) = loser({X, v#}) The replica which made the losing version appears in the lineage of the winner, with the same version. There is no conflict. The “losing” row is not really a conflict loser, but merely an earlier version of the winning row.

winner({X v#}) > loser({X, v#}) The replica which made the losing version appears in the lineage of the winner with a higher version. Either it is the case that the losing row is a prior version of the winning row, or the replica which made the losing version has already been informed of the losing version and made a later update. In both of those cases, there is no new conflict for Wingman to store information about.

winner({X v#}) < loser({X, v#}), or loser({X,v#)} not in Winner lineage. The replica which made the losing version does not appear at all in the winner’s lineage, or it appears with a lower version than that of the losing row. There is in fact a conflict, and Wingman will store conflict information at the replica which created the losing version of the row.

winner({X,v#}) not in loser lineage; This is not a conflict since ({X,v#}) is part of winning lineage.

3.3 Multiple Updates To a Losing Row

If multiple replicas have made updates that are not reflected in the winning version of the row, then each of those replicas will get conflict information for that row. When Wingman compares the lineages of two versions of a row, it searches through the lineage of the losing version to find the highest version in the loser that corresponds to a change by the local replica. If the local replica never made a change in losing version, or if it made a version that is included in the lineage of the winning version, then no conflict information gets entered into the local replica. If the local replica made a change creating a version that is not included in the winner’s lineage, then conflict information is entered at the local replica.

For example, if Wingman is synchronizing Replica A and Replica B, and the lineages for a particular row are {(C, 3), (A, 2)} and {(B, 4), (D, 2), (A, 1)}, then the second version of the row would win, because Replica A’s update to the row was not known to Replica B when it created the winning version, Wingman would put conflict information into Replica A to retain the information that was in A’s lost update. If Replica C subsequently synchronized with A or B, Wingman would see that Replica B’s “winning” update was made without knowledge of C’s update, and would also put conflict information into Replica C.

3.4 Using Stored Conflict Information

When Wingman stores conflict information at a local replica, it first copies the “losing” version of the row into a “Conflict” table that has the same structure as the original table. The “winning” version of the row resides in the actual user table. Wingman maintains a separate system table that maintains the information about which tables have related “Conflict” tables, and what the names of the “Conflict” tables are. Users can create special queries and code to examine conflicts and override the way in which Wingman has resolved conflicts. One example of this is the “Conflict Resolution Wizard” in Microsoft Access, which allows users to resolve conflicts interactively.

3.5 Errors and Error Information

With some types of conflicts, Wingman will not be able to propagate changes from one replica to another. One simple example is the case where a table must satisfy a unique key constraint, and two replicas both attempt to insert a row that has the same key value. If each insert succeeds, there is no knowledge that the constraint has been violated until Wingman attempts to synchronize the replicas. Wingman keeps a special table, MSysErrors, at each replica to store information about changes that cannot be propagated at another replica. In this case, Wingman would store rows in MSysErrors reflecting the fact that rows could not be inserted due to duplicate key errors, along with information specifying which tables were involved and at which replicas the errors occurred. This table is replicated, which allows administrators to find out about synchronization problems that are occurring at other replicas.

Some synchronization problems can be transient in nature, such as locking conflicts. Others, like the unique key violation, require some user action to restore the system to correctness. (In this case, the appropriate user action might be to delete one of the two conflicting rows.) Most referential integrity violations, such as inserting a row with a foreign key while another replica is deleting the row with the corresponding primary key, can be either transient or persistent, depending on whether cascading deletes and updates are enabled. Once a problem has been fixed, error information is deleted from MSysErrors, although it may take a while for those deletes to propagate to other replicas.

Because any errors that require user intervention are undesirable, Wingman has provided some features that make it simpler to avoid them. In the past, many Microsoft Access users have relied on counter columns as automatically generated unique keys for tables. Because these would be very likely to cause duplicate key conflicts in a replica set, Wingman automatically alters the behavior of counter columns for replicated tables: Rather than new rows getting monotonically increasing values, they get random values which don’t duplicate any existing values at that replica. This greatly reduces the probability of generating duplicate keys at two replicas. Wingman has also added a GUID datatype that users can select as the unique key for a table. These 128-bit values include a timestamp piece, a piece from the machine’s network address, and enough other bits to make it virtually impossible to generate the same value twice.

3.5 Some details

Wingman does two simple things to avoid common conflicts.

AutoNumber fields increment by one for each new record. This is a source of invoice numbers, employee numbers and the like. Using a replicated AutoNumber key field would very likely result in conflicts. Each replica would create the same next number and all but one would be discarded. To solve this problem, when an AutoNumber column is replicated, the numbers are chosen at random (from the un-used numbers) rather than being chosen sequentially. This makes the collision probability among inserts very unlikely,

BLOB (binary large object) fields are used to store text, image, or sound data. If a record stores ordinary data and blob fields, the metadata is often updated but the blob is only rarely changed. In this case, the blob data is version separately from the “ordinary” data. This reduces the size off the shadow update records (pending updates) stored at each replica and exchanged among replicas.

Not all replicas know about all others. Each replica knows about replicas that it created and the replica it came from. These are it’s neighbors. A replica synchronizes with each of its neighbors in order. The synchronization is done on command (by user request) or it can be scheduled to happen periodically.

When a synchronization fails , any conflicts are recorded at the loser (the old value is saved at the loser). When the loser reconnects to an Access database, a Wizard presents these updates to the user in graphical form showing the old and new value of the record. The user is given the choice of (1) discarding the losing value or (2) promoting the loser to have a new highest version number (thereby making it the winner).

The overhead for each record is approximately 16 bytes of GUID, 4 bytes of generation and version number, and 4 bytes for each lineage entry.

3.6 Consequences of the design

There are several ways to “game” the replication system. Two characteristic ways can be thought of as personality traits:

Hyper Harry: makes 10,000 updates so his version is far beyond every one else’s. So his update will win any conflict.

Self Centered Sam: whenever asked by the wizard to accept an update, Sam says no. This causes his original updates to over-ride the updates of others. Others never hear about the fact that their updates have been discarded since the wizard just takes Sam’s update and gives it a new maximal version number.

� EMBED Visio.Drawing.4 ���

An interesting property is that a replica can lose a conflict. Then a later update based on the loser value may be installed as a winner. The diagram to the right shows an example of this. Suppose Jim creates a row and propagates it to Mary. Jim then updates the row propagates it to Harry. Harry goes off and makes a thousand updates based on Jim’s work. Meanwhile Jim and Mary synchronize and Mary’s update wins the conflict resolution. Jim is informed that his second update was discarded. Later, Harry returns and synchronizes with Jim and Mary. Mary discovers that her update loses to Harry. But Harry’s update was based on Jim’s second (discarded) update.

There are many other interesting ways that picking the maximum version number can give unexpected results. Surprisingly, these problems do not arise in many applications because the workflow prevents them.. Consequently, Wingman replication is being widely deployed in applications.

4. Conclusions

Wingman’s multi-master replication scheme allows users a great deal of flexibility in building applications and sharing data. While conflicts can occur, Wingman takes care not to lose information, but stores it in the replica so that users can correct any conflict resolutions that need correction. Also, the flexibility embodied in the system allows users to create error situations that Wingman will not resolve by itself, but relevant information is always captured and made available when there are any synchronization problems. While the level of consistency might make it inappropriate for some applications, the ability to update data anywhere, work while disconnected, and propagate schema changes make it possible to create many completely new applications.

5. Acknowledgments

I would like to thank Allen Reiter and Eric Christensen for their early work on the Wingman design; Mark Johnson, Raj Batra, Phillip Garding and Charu Narayanan for both their design contributions and their work in implementing Wingman; George Snelling for writing the Microsoft Access Conflict Resolver; Peter Bateman for writing the product documentation; Tony Poll for program management; Jack Slatter, Jennifer Perret, Wei-Chung Wang, Deborah Jones, Mike Treat, Sam Cheng, Judd Hardy, and Curtis Deems for testing the product. I would also like to thank Phil Bernstein and Diana Boyle for reviewing and editing this paper.

� Microsoft Access, and Visual Basic are trademarks of Microsoft Corporation.

