
An Approach to Transaction Processing for Distributed

Object-Oriented Databases

Mikhail M. Gilula

gilula@4ds.com

Jacob Gluz

jacob@4ds.com

Alexei P. Stolboushkin

aps@4ds.com

Anatoly Volkhover

anatoly@4ds.com

Fourth Dimension Software

555 Twin Dolphin Dr.

Redwood City, CA 94065-2102

April 5, 1999

Abstract

We discuss design and implementation issues related to online transaction

processing (OLTP) for object-oriented databases in heterogeneous environment.

In the described two-layered scheme, nested transactions are controlled at the

lower level of a distributed �le system, uniformly for all types of data and indexes.

The paper focuses on the advantages of this scheme, as well as on the algorithms

of its e�cient support.

The approach has been implemented in COOL-NT (Common Object-Orien-

ted Language{New Technology)|an object-oriented application development plat-

form for medium to large-scale OLTP systems.

1 Introduction

Most existing OLTP systems have been developed for relational databases. As systems

supporting transactions for object-oriented databases have more recently started to

appear, several of them relied on the same techniques and solutions. It has become

clear, however, that objects do not generally map well into the relational design;

speci�cally, as far as transaction control is concerned, the number of input/output

operations becomes prohibitively high. Distributed databases only make things worse,

inasmuch as individual objects lose their identity and get clustered inadvertently.

At the same time, providing native transaction support for object-oriented data-

bases presents a challenging problem, unless severe restrictions are put on the trans-

actional objects. For example, in the Argus programming language [5], the developer

needs to explicitly consider synchronization and recovery issues for complex types.

We pursue an approach in which transactions are controlled at the level of a

distributed �le system, and then transactions for the object-oriented database are

1



implemented through the lower-level transaction control, uniformly for all types of

data and indexes. This layering allows implementation of full-scale nested transaction

support in a distributed environment without compromising the strengths of object-

oriented database design. As an added bene�t, multi-platform support is simpli�ed

under this approach.

The idea of transactional �le systems is not novel|see [2] and the bibliography

therein. However, the design philosophy of COOL-NT is di�erent in that the par-

titioning of data is encapsulated in the �le system layer. Beyond this level, we can

think of a COOL-NT cluster as of a single server. Besides, COOL-NT provides an

object-oriented programming language, which supports an object-oriented database

with nested transactions.

In this presentation we want to share our experience in carrying out these ideas.

We start o� by trying to sell the reader on the idea of transaction processing on

clusters of machines, speci�cally, clusters of lower-cost computers.

2 OLTP on Computer Clusters

With the processing power of personal computers doubling every 2 years, personal

computers have clearly entered the age of puberty and are soon to meet challenges once

seen as exclusively reserved for mainframes. For many applications, OLTP systems

may be accommodated on clusters of lower-performance machines as successfully as

on mainframes. This is especially true when the crucial performance factor is the

number of transactions per second, rather than the length of any single transaction.

Of course, for time-critical OLTP, expensive high performance computers will continue

to be superior.

Generally, clustered OLTP systems do scale well, and it is not unreasonable to

expect that the average system performance will grow linearly in the size of the

cluster of machines.1 This scalability relies on the partitioning of the database across

the cluster to allow several database operations to run concurrently. In COOL-NT

this is achieved by running a database server on each machine in the cluster. This

server is responsible for performing operations on the local partitions, as well as

for automatically routing database requests to the other machines in the cluster.

Transactions on the database also are supported at this level.

In implementing this approach, one faces challenges not usually encountered when

dealing with existing OLTP environments such as Tandem's TMF (Transaction Mon-

itoring Facility). For one thing, because of the large variety of hardware and software

solutions used on smaller machines, the system should be prepared to readily handle

these numerous architectures. Also, the hardware here is less reliable, and transaction

processing generally lacks hardware support. It may realistically be assumed that any

node in the cluster, as well as the networking hardware, may fail at any moment. At

the software level, extra care should be taken to guarantee that if this is the case,

uncommitted transactions are rolled back completely upon �xing the problem.

In the framework of COOL-NT's multi-layered architecture, across-the-cluster

1
except going from 1 to 2 machines is sublinear because of the one-time communication charge.

2



partitioning and database transaction processing are encapsulated in the lowest layer

which is called SMF (Stream Manipulation Facility). None of the higher layers deal

with the issues of hardware failure recovery or cross-platform data accessibility.

3 Object-oriented Nested Transactions

One of our main goals has been to fully support true object-oriented databases. The

object repositories, called containers, are each capable of storing objects of a certain

speci�ed class, as well as of any class derived from it. Indexing of the objects in a

container, too, is supported in object-oriented terms. This means that indexed keys

are de�ned using data and/or (possibly, virtual) function members of the base class.

Several special features of indexes that may require nontrivial additional work under

other designs, �t here naturally. These features include:

1. Multiple entry indexes: For example, a customer can be found using either

one of his telephone numbers.

2. Parameterized orderings: For example, points on a surface can be indexed

by their distance from a given point (parameter).

Handling of containers is supported by the CMF (Container Manipulation Facility).

Partitioning of data across the cluster and distributed nested transaction control

(cf. [3]), as was said earlier, are isolated from CMF and supported at a lower level by

the SMF, which is unaware of objects or containers.

Having the isolated SMF layer also facilitates potential extensions of the database

by additional indexing mechanisms. By way of example, if one wanted to arm the

database with R-tree indexing [4], all one would need to do would be to map the

concurrent R-tree algorithms into the existing SMF layer, without worrying about

partitioning or transaction control.

E�cient implementation of this scheme relies on several original techniques. The

main problem that needed to be resolved was as follows. Because transaction control

is not object-oriented, but essentially �le-oriented, insertions, deletions, and modi-

�cations of the objects under transactions lead to a higher degree of index locking

(indexes are implemented via a version of B-trees). The problem is only made more

severe by the fact that nested transactions generally lead to a higher degree of trans-

action isolation.

Our solution for this problem is two-fold. First, to speed up transactions we store

all non-committed modi�cations in cache memory. For nested transactions it means

that only the outermost transaction committing will cause any I/O operations, while

the inner transactions are fully processed in memory. As a side e�ect, this approach

radically improves e�ciency when aborting transactions (or subtransactions) is used

as a programming technique.

Second, we reduce isolation of transactions by the following means:

� By using holds in addition to locks. A hold is a lock of a special less-restrictive

type that may coexist with another hold (but not with a \true" lock!). More

3



speci�cally, a record may be held by one or more independent transactions at

the same time. A hold guarantees that the record may not be changed by any

of the concurrent transactions.

� By employing the dirty read-through-lock semantics (see [3]) in which even

uncommitted changes are visible to other transactions. The e�ect of this is

that searches and retrievals in the database are not normally slowed down by

modi�cations. If necessary, however, an application may gain access to the clean

(=committed) data by �rst locking or holding it.

� By using a new page-oriented isolation protocol for B-trees: The main di�er-

ences from the standard concurrent algorithms for B-trees with page-oriented

isolation (cf. [1, 3]) can briey (and approximately) be described as follows:

1. In the retrieval case, no locking is used. Instead, consistency of retrieved

pages is continuously checked, and in case of a failure the search restarts.

This guarantees that retrievals are not held down by modi�cations

2. When inserting or deleting, at �rst locking follows the assumption from [1]

that the target leaf will not split, hence, locking is �rst attempted on the

leaf node only. If this fails, however, we further assume that the leaf's

parent will not split, and, respectively, attempt to lock the two last nodes

in the path, and so on. As compared to the algorithm from [1] (that in the

case of failure starts locking from the root node down), our locking method

is potentially subject to more failures and restarts, however, it results in

the lowest possible degree of locking

We also are taking advantage of the e�ect that timeouts have on conicting transac-

tions. When concurrent transactions each involve several locks and changes, increas-

ing the timeouts may actually hurt all the transactions, because of the application

deadlocks. We employ an elaborate scheme in which timeouts are sometimes arti�-

cially lowered, but the transactions aborted because of the timeouts are repeated. In

many cases, this has proved to be e�cient.

The syntactical approach to transaction processing in COOL-NT may also interest

the reader. We adopt the viewpoint that begin transaction and end transaction

are \parentheses", like, say, while and end. Thus, balancing of these parentheses

becomes a syntactical problem. One implication is that, although COOL-NT is multi-

threaded, no independent thread may start within an ongoing transaction. However,

a transaction may be made multi-threaded by way of forking, which starts several

threads and then waits for all of them to complete.

Conclusion

In this presentation, we focus on object-oriented distributed nested transaction con-

trol in COOL-NT and outline the main ideas and techniques underlying our approach.

4



There is more to COOL-NT than just its database. We generally left aside the elab-

orate process-scheduling mechanism, and the multi-tiered client/server architecture

that may be especially helpful in designing over-the-Internet applications.

Although we tried to highlight distributed transaction processing on lower-perfor-

mance machines, by its potential, COOL-NT is suited equally well for high perfor-

mance systems. However, we believe it to be COOL-NT's unique feature that it can

e�ciently run on mixed-platform clusters.

COOL-NT is an application development platform aimed at medium to large-scale

distributed online transaction processing systems. Among its main features are:

� Clustering technology that allows easy database partitioning, as well as dy-

namic distribution and scheduling of server processes, across a cluster of ma-

chines

� Multi-platform support that simpli�es integration of a variety of hardware

and software architectures within a cluster

� Structured nested transaction control

� True object-oriented database

� Full-featured object-oriented programming language with integrated da-

tabase programming functionality

At present the short-term market orientation is on Windows NT. However, the archi-

tectural design of COOL-NT greatly facilitates support of virtually all multi-tasking

platforms, and other versions of COOL-NT are forthcoming.

References

[1] R. Bayer and M. Schkolnick, Concurrency of Operations on B-Trees, Acta Infor-

matica, 9(1), 1977, 1{21.

[2] J.L. Eppinger, L.B. Mummert, and A.Z. Spector, \Camelot and Avalon: A Dis-

tributed Transaction Facility", Morgan Kaufmann Publ., Inc., 1991, 505 pp.

[3] J. Gray and A. Reuter, \Transaction Processing: Concepts and Techniques",

Morgan Kaufmann Publ., Inc., 1993, 1070 pp.

[4] A. Guttman, R-trees: A Dynamic Index Structure for Spatial Searching, SIG-

MOD Record, 14(2), 1984, pp. 47-57.

[5] B. Liskov, D. Curtis, P. Johnson, and R. Scheier, Implementation of Argus.

In Proc. of the 11th Symp. on Operating System Principles, ACM, November 87,

pp. 111{122.

5


