
Web Caching With Dynamic Content
(only first 5 pages included for abstract submission)

George Copeland - copeland@austin.ibm.com - (512) 838-0267
Matt McClain - mmcclain@austin.ibm.com - (512) 838-3675

IBM

Abstract

The web application server (WAS) is becoming the transaction monitor of the
internet world. A WAS is a web server extended with support for application
development like a transaction monitor. The problems faced are similar,
including servicing a large number of clients, handling high throughput with
reasonable response times, as well as the need for security, correctness and high
availability. The main difference is the type of client, which is more numerous
but less intensive and less controllable. The client uses HTTP for communication
and HTML for presentation.

This paper describes the issues involved in caching dynamic content in a web
application. It describes when caching is a good idea, caching data vs. rendered
pages, caching granularity, where to put the cache in a system, what metadata is
needed for caching and how a web application developer might specify it. It also
discusses implementation issues, including throughput scaleup issues.

Many of the ideas in this paper were taken from the pioneering work of
[Iyengar and Challenger 1997], [Challenger, Iyengar, and Dantzig 1998], and
[Challenger, Dantzig, and Iyengar 1998] on the Olympic web sites, as well as
experience with Net.Commerce.

When caching is a good idea
No content is completely static because everything changes eventually. Figure 1 illustrates

how content in an HTML page should be treated differently depending on how often it changes:

ì If content changes very infrequently (eg, a typical home page), then it is convenient to
republish the web site whenever its content changes. It is usually safe to enable browser and
proxy server caching.

ì If content changes so often that it is unreasonable to republish the web site every time it
changes, then JSPs should be used that dynamically get the content from a file or database,
and then render (ie, format) it into HTML. In this case, static caching in browsers and proxy
servers should be disabled. In this case, dynamic caching may or may not be useful:

ä If the content is constant over a large number of requests (eg, products in
e-commerce, white pages), then performance can be significantly improved by using
dynamic caching. With dynamic caching, either time limits or an event-driven
invalidation mechanism can be used to keep the content in the cache up to date.

ä If the content changes continuously (eg, a ticker tape), then any form of caching is a
bad idea. JSPs should be used without any caching.

One way to view caching is that it automates the publishing process. For updates that are too
frequent for manual republishing each time some underlying dynamic content changes,

Page 1 of 13

JSP/servlets with dynamic content can be used along with caching to incrementally and
automatically republish.

Caching HTML vs. data
Caching rendered HTML offers the following performance improvements when the

underlying dynamic content has not changed:

ì Avoiding access to backend servers (eg, database, transaction monitor, internal application,
news service) to get the dynamic content.

ì Avoiding the rendering the dynamic content into HTML.

Caching the underlying dynamic content (ie, data) instead of HTML requires rendering the
data into HTML during the fast path. However, the fast path occurs more often. When the same
data is rendered in multiple ways, caching rendered HTML requires accessing the backend
server once for each rendering. The tradeoff is difficult to make because it is between always
avoiding a typically less expensive activity (ie, rerendering) vs. infrequently avoiding a typically
more expensive activity (ie, backend access). In this paper, we concentrate on caching rendered
HTML.

Caching granularity
Caching rendered HTML with dynamic content requires flexibility in the granularity of the

cache. A fragment is a part or all of a rendered HTML page which can be cached. A fragment
can contain 0 or more child fragments, and can be contained by 0 or more parent fragments,
forming a directed acyclic graph (DAG). Figure 2 illustrates a returned page fragment (the
product display page) made up of the following 5 child fragments in order of increasing rate of
change in the underlying data:

Page 2 of 13

Figure 1: When To Cache

rate of
change in
contentcontinuousper week

eg: home page eg: white pages,
product display eg: ticker tape

static
caching

dynamic
caching

no
caching

publish static
HTML
allow browser
& proxy server
caching

publish JSPs that get dynamic content
from a database, etc.
turn off browser & proxy server caching

use dynamic caching

per minute

ì The href for an image that shows what the product looks like. The underlying database
record for the product contains this URL.

ì A formatted table that includes the detailed description of the product (eg, product order
number, name, options and price).

ì A personalized greeting (eg, “Hello, John! Welcome to AcmeCorp.”).

ì A formatted shopping cart, including the order number, name, quantity and price of the
products that have been chosen for possible purchase.

ì A href for an image that displays an advertisement.

The advertisement href is different each time a page is sent to a shopper. This makes the overall
page too volatile to cache. However, fragment granularity still allows the rest of the page to be
cached. The href to the product image and the detailed product description are excellent
candidates for fragments to be cached, because the underlying data describing a particular
product changes infrequently. However, the underlying data describing some product changes
far too frequently for static publishing. The personalized greeting has the lifetime of a user
session but only for a particular shopper. It may be used several times within a fairly short time
interval, so it is a good candidate for dynamic caching. The shopping cart changes multiple
times within a user session (every time something is added or the quantity changes), so it is not
as good a candidate for dynamic caching as the personalized greeting. However, if it is included
on every page returned to the shopper, then it is typically returned several times between

changes, so there is a reasonable case for caching it. The advertisement href is a very poor
candidate for caching because the hit ratio would be zero and caching has its own overhead (ie,
storing it in the cache and invalidating it).

Page 3 of 13

Figure 2: Fragment Granularity

product
display

page

personalized
greeting

ad
service

product
detail
table

product
gif url

rate of
change in
content

continuous

one instance:
per week

some instance:
per minute

per session

shopping
cart

per minute

an
uncached
fragment

a
cached

fragment

"When part of a
page is too volatile

to cache, rest of
page can still be

cached."

Where to put caching
Two places to put the caching in a system are the following:

ì External cache: There are a wide variety of simple caches that are external to the web
application server (eg, web server, sprayer).

ì Integrated cache: Integrate the cache into a web application server. When a template page
containing requests for dynamic content is executed, cache the resulting rendered fragment.

The advantage of an external cache is:

ì These offer better cost-performance than a web application server which supports the
flexibility and protection required for application code. A simple cache can even be
supported in machines that do not have the overhead of an operating system (eg, multiple
processes/threads, memory management). These systems can have a cost-performance
advantage of as much as 5x.

The advantages of an integrated cache are:

ì Fragment granularity can be exploited, so that if part of a page is too volatile to cache, the
rest can still be cached. With an external cache, only whole pages (ie, top-level fragments)
can be cached, so that the pages cannot have anything on them that is too volatile to cache.

ì Access control can be enforced, so a page can be accessible to only a selected group (eg, the
product description pages may be different for different shopper groups). With an external
cache, authentication is not done except for firewall enforcement, so the pages must be
accessible to everyone within that security domain.

The best of both worlds is a web application server with an integrated cache that can also
push results of selected template pages to a external caches. This would allow a decision at a
template page granularity to be made as to whether that template would be pushed to a simple
cache vs. an integrated cache. Those templates that satisfy the above conditions could exploit
the cost-performance advantage of an external cache. Other templates could use the flexibility
of the integrated cache.

Options when caching a fragment
For each fragment that is cached, the FragmentCache supports the following options:

ì Allow LRU replacement to be applied to it or not (ie, pinned). Reasons for this might be
realtime requirements or the fact that the web developer knows better than an LRU
algorithm.

ì Set invalidation ids that represent external events which cause the fragment to be invalidated.
When a fragment is invalidated, all of its parent fragments are invalided. A database trigger
might be used to create the external event that initiates the invalidation.

ì Set a time limit in second granularity. When the time limit expires, the fragment is discarded
from the cache. For the web developer, this is simpler than setting invalidation ids because
there are no triggers to write. However, it causes many fragments to be discarded and
rerendered when they are actually still valid.

ì Aggressively rerender a fragment when it is invalidated or when its time limit expires,
instead of waiting for an external request that needs the fragment. Aggressive rerendering
can exploit the idle time of the server by rendering pages in a background mode. A daemon

Page 4 of 13

thread would look for rerendering work at low priority. When it finds work, it executes the
rerendering at normal priority, so that external requests that need the fragment are not kept
waiting. This is similar to automated publishing.

ì Set external caches that can be written to when they are rendered. These are subject to the
constraints described above for external caches.

Supplying caching metadata
Figure 3 describes the information that is needed to cache a fragment. Each of these is

discussed below:

ì A fragment id identifies the fragment within the FragmentCache. It must be unique within
the scope of the FragmentCache. This scope could be a process within a server (if each
server process has its own FragmentCache instance), a server (if a FragmentCache instance is
shared across the processes within a server), or a cluster of servers (if a FragmentCache is
shared across multiple nodes in a cluster).

ì The maximum time interval in seconds that the object should be cached. A negative value
implies that there is no time limit.

ì Pinned indicates whether the cache entry should be exempt from LRU replacement. If a time
limit expires, the entry will be marked to be removed when no longer pinned.

ì The URL relative to the server for this fragment. For a top-level fragment (eg, a JSP/Servlet
that is externally requested), this could be obtained from the HTTP request object’s URL.
For a contained fragment, this is the JSP/Servlet file name URL. The id can be the URL, the
URL plus some request attributes or not directly related to the URL.

ì The list of invalidation identifiers. Each invalidation id is a string that identifies the
underlying dynamic content (ie, the raw data). A fragment can use zero or more pieces of
raw data, so a fragment can have zero or more invalidation ids. A piece of raw data can be
used in one or more fragments, so an invalidation id can have one or more fragments. When
the raw data changes, then its invalidation id is used to invalidate all the fragments that
depend on it, as well as their parent fragments recursively. It must be unique within the same
scope as the fragment id. When a piece of data is used in only one fragment, the invalidation
id of the data can be the same as the fragment id. In our implementation, we chose to make
this common case simple to configure by having the fragment id always be one of the
invalidation ids. When a piece of data is used in multiple fragments, its invalidation id
would be different from either of the fragment ids.

ì The parent fragment id of the fragment that caches this fragment. This is null if the cached
fragment is externally requested (ie, the "parent" is the server) or if the parent is not itself
included in the cache. This is used to propagate an invalidation up to containing parents.
For a fragment with multiple parents, a union of the Fragment’s parent ids is maintained.

ì The aggressiveRerender option is a boolean indicating that the fragment should be
aggressively rerendered when either its time limit expires or it is invalidated. If
aggressiveRerender=true, an expiration or invalidation causes the fragment’s value to be set
to null and the fragment id put on a queue to be rerendered when idle time permits. If false,
an expiration or invalidation causes the fragment to be removed from the cache. It will be
rerendered and put back in the cache only when needed by an external HTTP request.

ì The set of external caches that are written to when the fragment is rendered.

Page 5 of 13

