
Using Transaction Semantics to Increase Performance�

Arthur J. Bernsteiny David S. Gerstl Philip M. Lewis Shiyong Lu

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

fart, gerstl, pml, shiyongg@cs.sunysb.edu

1 Introduction

Serializability is the most stringent level of isolation used in transaction processing systems and

has been widely accepted as the correctness criterion for concurrently executing transactions. It

generally uses a strict two-phase locking protocol, in which locks are held until transactions commit.

Unfortunately, this implies that locks might be held for long periods of time, causing performance

to su�er, particularly in applications having long running transactions and/or data hotspots. In

this paper, we describe an alternative de�nition of correctness, semantic correctness, which can be

used to signi�cantly improve the performance of transaction processing systems while maintaining

correctness. We present our results in three di�erent contexts.

1. Some authors have proposed decomposing programmed transactions into atomic and isolated

pieces called steps. Steps release locks when they complete, and thus the steps of concurrently

executing transactions can be interleaved. Since locks are held for shorter periods of time,

performance can be improved. Furthermore, by choosing the step boundaries, the programmer

can control the points at which locks are released. However, correctness is a problem since the

interleaved schedules of steps might not be serializable and might not be correct. Semantic

correctness can be used to provide a speci�cation of correct step interleavings and as the basis

of a concurrency control that will schedule the execution of steps based on that speci�cation.

We give experimental results showing the increased performance that can be provided with

such a concurrency control.

2. One technique for improving the performance of an application is to use an isolation level

that is less stringent than SERIALIZABLE. With READ COMMITTED, for example, per-

formance gains are achieved by releasing read locks early. Unfortunately, only the SERI-

ALIZABLE level guarantees correct execution for all applications. Lower isolation levels are

generally chosen in an ad hoc fashion, with no guarantee that the application will run correctly.

�This paper is based upon work supported by NSF grant CCR-9402415. The authors would like to express their

gratitude to Computer Associates Internationaltm for the donation of the copy of CA-Open Ingrestm used in these

experiments.
yContact Author:(516)632-8457/8334 (fax)

1



Semantic correctness can be used to provide such a guarantee | thus achieving the higher

performance allowed when lower isolation levels are used, without sacri�cing correctness.

3. A multidatabase system is a collection of logically interrelated databases distributed over a

network. A global transaction over a multidatabase is a transaction that invokes the sub-

transactions exported by the individual databases. If all sites in a multidatabase system use

strict two-phase locking and participate in a two-phase commit protocol, the transactions are

globally serializable and hence correct. However, in many applications some of the individual

sites are unwilling (perhaps because of performance considerations) or unable (perhaps be-

cause they are legacy systems) to participate in a two-phase commit protocol and hence the

transactions might not be globally serializable and might not be correct. Since the subtrans-

actions in a multidatabase system are similar in many ways to the steps in a step-decomposed

transactions, semantic correctness can be used to determine correct executions and to build

a global concurrency control that will schedule the subtransactions to obtain correct execu-

tions | thus achieving the higher performance allowed when two-phase commit is not used,

without sacri�cing correctness.

2 Semantic Correctness

We assume that the desired e�ect of each transaction is described by a postcondition derived

from its speci�cation, and that the allowable states of the database are described by a consistency

constraint. We have developed a formal de�nition of semantic correctness based on these postcon-

ditions. Informally, a schedule of transactions is semantically correct if the initial and �nal states

of the database are consistent and the �nal state reects the combined results of all committed

transactions as speci�ed in their postconditions. For example, the combined results of a schedule

of bank deposit and withdrawal transactions is that the �nal value of the account-balance is the

initial value plus the sum of the deposits minus the sum of the withdrawals. We believe this is the

weakest su�cient condition for the correct execution of an arbitrary application. It is weaker than

serializability since any schedule that is serializable is semantically correct, but it allows schedules

that produce states that cannot be reached in any serial schedule. Other published \correctness

criteria," such as strong correctness, two-level serializability, and the lower isolation levels, do not

guarantee all parts of our de�nition for all applications.

3 A Concurrency Control for a Step-Decomposed Transactions

When transactions are decomposed into steps, the programmer must specify how the steps of

transactions can be interleaved. This speci�cation can be done either in an ad hoc fashion (analogous

to the choice of a lower isolation level), or by using formal methods. In either case, allowable

interleavings can be described by a table which indicates whether a step, S, of transaction T1 can

be allowed to execute between two steps, Si and Si+1, of transaction T2. We have built a concurrency

control, called an assertional concurrency control (ACC), within the CA-Open Ingrestm database

management system that uses such a table to permit only allowable interleavings.

An ad hoc speci�cation might be appropriate when performance is degraded by a few serious

points of lock contention. Performance might then be signi�cantly improved by decomposing a few

transactions into a small number of steps and determining allowable interleavings using informal

2



reasoning. In a formal approach, a transaction's postcondition is used to determine the precondition

of each step. We identify (at design time) the steps that can potentially invalidate each such

assertion. The ACC produces semantically correct schedules by ensuring that a step's precondition

is true when it is executed and a transaction's postcondition is not invalidated by transactions that

have been interleaved with it.

Step interleaving is controlled using a new lock mode, called assertional lock mode, incorporated

into a conventional locking system. Assertional locks are weaker than conventional read/write locks.

Conicts between assertional locks are detected at run time by a simple table look-up. While a

step releases all conventional locks when it completes, assertional locks are held between steps to

control interleaving. Viewed formally, assertional locks are used to lock assertions. An assertion is

locked when each item referenced by the assertion has been assertionally locked.

The results produced by a step become visible to concurrent transactions when the step com-

pletes. Hence, the only way that the e�ects of a transaction can be reversed is through compen-

sation. Compensating steps must be provided by the application programmer and are maintained

by the database server as stored procedures. When a step completes, it writes a step-commit log

record that includes a reference to the corresponding compensating step. These records need not

be forced until the transaction as a whole commits. Thus the server can autonomously initiate

compensation by reading the log record and invoking the appropriate stored procedure. Further-

more the transaction saves some of its work area in a database table so that compensation can be

initiated if the transaction is rolled back due to a crash.

The ACC was tested using a load based on TPC-Ctm Benchmark Transactions. The major

departures from benchmark code was that in some of the experiments we substituted a read/write

restock transaction for the read/only stock level transaction and in some experiments we introduced

3 seconds of simulated compute time into these transactions. The purpose of these modi�cations

was to measure the impact of long-running transactions. Results are shown in Figure 1. Each curve

plots the ratio of the average response time using strict two-phase locking to the average response

time using the ACC as a function of the level of concurrency (measured by the number of active

terminals). The �gure demonstrates an improvement of up to 80% when lock contention is high,

when long running transactions are a part of the mix, and/or when su�cient system resources are

present to support the additional concurrency that the new control makes possible.

4 Correctness of Non-Serializable Isolation Levels

The ANSI/ISO standard de�nes three isolation levels lower than SERIALIZABLE: READ UN-

COMMITTED, READ COMMITTED, and REPEATABLE READ. At least one major database

vendor also provides SNAPSHOT isolation, implemented through a combination of locking and

multiversion techniques. In addition some vendors implement a variant of READ COMMITTED,

called optimistic READ COMMITTED or READ COMMITTED with �rst-committer wins.

Databases frequently use locking protocols to implement these levels. These protocols can be

interpreted as decomposing transactions into steps. Thus semantic correctness can be used to

determine the correctness of the resulting schedules. For each isolation level we prove a condition

having the property that, if each transaction satis�es the condition corresponding to its level, all

schedules will be semantically correct. We assume that di�erent transactions can be executing at

di�erent levels, but that each transaction is executing at least at READ UNCOMMITTED. Thus

the performance bene�t resulting from the use of lower isolation levels does not come at the expense

3



10 20 30 40
Number of Terminals per Warehouse

0.5

1

1.5

2

2.5

R
a
ti
o
 S

tr
ic

t 
2
 P

h
a
s
e
 L

o
c
k
in

g
 R

T
/A

C
C

 R
T

restock with 3 Second Delay
stock_level with 3 Second Delay
restock with 0 Second Delay
stock_level with 0 Second Delay

Figure 1: Ratio NACC/ACC Response Time in Four Con�gurations

of correctness. Examples of these results are:

A transaction, Ti, executed at the READ COMMITTED level, executes semantically

correctly if all the writes of each other transaction, considered as an atomic unit, do

not interfere with the postcondition of every READ statement in Ti and with the post-

condition of Ti.

A transaction, Ti, executed at the READ COMMITTED with �rst-committer-wins level

executes semantically correctly if all the writes of each other transaction, considered as

an atomic unit, do not interfere with the postconditions of those READ statements in

Ti that do not have a following WRITE statement (somewhere in the transaction) on

the same item, and do not interfere with the postcondition of Ti.

Let Ti be a transaction executed at the REPEATABLE READ level, and Si;j be an

arbitrary SELECT in Ti. Ti executes semantically correctly if all the write statements

of each other transaction, considered as an atomic unit, do not interfere with the post-

condition of Ti and either

4



(1) do not interfere with the postcondition of Si;j , or

(2) include DELETE or UPDATE statements that attempt to delete or update some

subset of the tuples returned by Si;j .

A set of transactions executes semantically correctly under SNAPSHOT isolation if,

given any two transactions Ti and Tj from the set, either:

(1) Ti or Tj is a read-only transaction or

(2) Ti's write set intersects Tj 's write set or

(3) all the write statements of Tj considered as an atomic unit do not interfere with the

precondition of the �rst WRITE statement in Ti and with the postcondition of Ti.

5 A Global Concurrency Control for Multidatabase Systems

In a common model of a multidatabase systems, a global transaction invokes subtransactions ex-

ported by local databases. When each subtransaction completes, it immediately commits. Thus

two-phase commit is not used to support global atomicity. We assume that each site uses two-phase

locking, so subtransactions at a site are serialized, but since two-phase commit is not used, the se-

rialization order at di�erent sites might be di�erent. Hence there might be no global serialization

order and execution might not be correct. As an added complication, local transactions might be

initiated at a site and might a�ect the serialization order at that site.

In the case when there are no local transactions, the subtransactions of a particular global trans-

action can be viewed as the steps of a step-decomposed version of that transaction. Thus the notion

of semantic correctness can be used to specify the allowable interleavings of these subtransactions

to achieve semantic correctness. The concepts underlying the ACC can then be used to build a

Global Concurrency Control to schedule subtransactions to achieve semantic correctness.

We are currently building such a system, called JAMB, (Java Accessing MultidaBases). JAMB

is middleware that provides global transaction support in the context of Java. It ensures that

concurrent schedules of distributed transactions are semantically correct. JAMB occupies the

middle tier of a 3-tier architecture. Clients talk to JAMB using RMI (Remote Method Invocation),

and JAMB utilizes JDBC to talk to the component databases.

An initial prototype of JAMB has been implemented.1 We hope to expand it to deal with the

situation in which a site can contain local transactions that do not talk to JAMB. We are inves-

tigating the relationship between semantic correctness and the concepts of two-level serializability

and strong correctness, which have been applied to this situation.

6 Conclusion

The use of serializability as a correctness condition has severe implications for reducing the perfor-

mance of a transaction processing system. Signi�cant performance improvements can be obtained

using a weaker correctness condition semantic correctness, which speci�es only that the combined

execution of all transactions reects the desired result of each transaction. Semantic correctness is

arguably the weakest correctness condition. We have investigated the use of semantic correctness in

the contexts of step-decomposed transactions, execution at lower isolation levels, and multidatabase

systems | in each case providing improved performance without sacri�cing correctness.

1http://www.cs.sunysb.edu/�shiyong/projects/jamb/jamb.html

5


